Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Нёбные миндалины иннервируются ветвями языкоглоточного нерва.
БИЛЕТ №13 1. Включения: определение, классификация, значение. Физико-химические свойства гиалоплазмы и ее значение в жизнедеятельности клетки. 2. Миелоидное кроветворение, его разновидности. Эритроцитарный дифферон. 3. Надпочечники: части, источники развития, строение, гормоны, регуляция, возрастные особенности строения. Включения — непостоянные структурные компоненты цитоплазмы. В процессе жизнедеятельности в некоторых клетках накапливаются случайные включения: · медикаментозные, · частички угля, · кремния и так далее. Трофические включения — лецитин в яйцеклетках, гликоген, липиды, имеются почти во всех клетках. Секреторные включения — секреторные гранулы в секретирующих клетках (зимогенные гранулы в ацинозных клетках поджелудочной железы, секреторные гранулы в эндокринных железах и другие). Экскреторные включения — вещества, подлежащие удалению из организма (например, гранулы мочевой кислоты в эпителии почечных канальцев). Пигментные включения — меланин, гемоглобин, липофусцин, билирубин и другие. Эти включения имеют определенный цвет и придают окраску всей клетке (меланин — черный или коричневый, гемоглобин — желто-красный и так далее). Необходимо отметить, что пигментные включения характерны только для определенных типов клеток (меланин содержится в меланоцитах, гемоглобин — в эритроцитах). Однако, липофусцин может накапливаться во многих типах клеток обычно при их старении. Его наличие в клетках свидетельствует о их старении и функциональной неполноценности. Кроветворение (гемоцитопоэз) процесс образования форменных элементов крови. Миелоидное кроветворение: · эритропоэз; · гранулоцитопоэз; · тромбоцитопоэз; · моноцитопоэз. В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток. Всего в схеме кроветворения различают 6 классов клеток: · 1 класс — стволовые клетки; · 2 класс — полустволовые клетки; · 3 класс — унипотентные клетки; · 4 класс — бластные клетки; · 5 класс — созревающие клетки; · 6 класс — зрелые форменные элементы. Совокупность клеток, составляющих линию дифференцировки стволовой клетки в определенный форменный элемент, образуют его дифферон или гистологический ряд. Например, эритроцитарный дифферон составляет: стволовая клетка, полустволовая клетка предшественница миелопоэза, унипотентная эритропоэтинчувствительная клетка, эритробласт, созревающие клеткипронормоцит, базофильный нормоцит, полихроматофильный нормоцит, оксифильный нормоцит, ретикулоцит, эритроцит. В процессе созревания эритроцитов в 5 классе происходит: синтез и накопление гемоглобина, редукция органелл, редукция ядра. В норме пополнение эритроцитов осуществляется в основном за счет деления и дифференцировки созревающих клеток пронормоцитов, базофильных и полихроматофильных нормоцитов. Такой тип кроветворения носит название гомопластического кроветворения. При выраженной кровопотери пополнение эритроцитов обеспечивается не только усиленным делением созревающих клеток, но и клеток 4, 3, 2 и даже 1 классов гетеропластический тип кроветворения, предшествующий собой уже репаративную регенерацию крови.
Функции надпочечников: · выработка минералокортикоидов (альдостерона, дезоксикортикостерона ацетата и других), регулирующих водно-солевой обмен, а также активирующих воспалительные и иммунные реакции. Минералокортикоиды стимулируют реабсорбцию натрия почками, что ведет к задержке в организме воды и повышению артериального давления; · выработка глюкокортикоидов (кортизола, гидрокортизона и других). Эти гормоны повышают уровень глюкозы в крови за счет синтеза ее из продуктов распада жиров и белков. Гормоны подавляют воспалительные и иммунные реакции, что используется в медицине для лечения аутоиммунных, аллергических реакций и так далее; · выработка половых гормонов, в основном андрогенов (дегидроэпиандростерона и андростендиона), которые имеют слабо выраженный андрогенный эффект, но выделяясь при стрессе, стимулируют рост мускулатуры. Выработку и секрецию андрогенов стимулирует адренокортикотропный гормон; · мозговое вещество продуцирует катехоламины — гормон адреналин и нейромедиатор норадреналин, которые вырабатываются при стрессе. Надпочечникиявляются парными паренхиматозными органами зонального типа. Снаружи покрыты капсулой из плотной волокнистой неоформленной ткани, от которой отходят прослойки вглубь органа — трабекулы. В капсуле находятся гладкие миоциты, вегетативные ганглии, скопления жировых клеток, нервы, сосуды. Капсула и прослойки рыхлой волокнистой неоформленной соединительной ткани образуют строму органа. Паренхима представлена совокупностью клеток: кортикоцитов в корковом веществе и хромаффиноцитов в мозговом. Корковое вещество состоит из нескольких зон: · субкапсулярная зона образована мелкими малодифференцированными кортикоцитами, играющими роль камбия для коры; · клубочковая зона составляет 10 % коры надпочечников. Образована небольшими кортикоцитами, формирующими клубочки. В них умеренно развита гладкая эндоплазматическая сеть место синтеза кортикостероидных гормонов. Функции клубочковой зоны выработка минералокортикоидов, а если говорить точнее, то в этой зоне происходит только завершающий этап биосинтеза минералокортикоидов из их предшественника кортикостерона, который поступает сюда из пучковой зоны; · пучковая зона — это наиболее выраженная зона коры надпочечников. Образована оксифильными кортикоцитами крупных размеров, формирующими тяжи и пучки. Между пучками в тонких прослойках рыхлой волокнистой соединительной ткани лежат синусоидные капилляры. Различают два вида пучковых кортикоцитов: темные и светлые. Это один тип клеток, находящихся в разных функциональных состояниях. Функция пучковой зоны — выработка глюкортикоидов (преимущественно кортизола и кортизона). · сетчатая зона занимает около 10—15 % всей коры. Состоит из мелких клеток, которые лежат в виде сети. В сетчатой зоне образуются глюкортикоиды и мужские половые гормоны, в частности, андростендион и дегидроэпиандростерон, а также в небольшом количестве женские половые гормоны (эстрогены и прогестерон). Андрогены коры надпочечников, в отличие от андрогенов половых желез, обладают слабо выраженным андрогенным эффектом, однако их анаболический эффект на скелетную мускулатуру сохранен, что имеет важное адаптивное значение. Мозговое вещество отделяется от коркового тонкой капсулой из рыхлой волокнистой соединительной ткани. Оно образовано скоплением клеток хромаффиноцитов, которые хорошо окрашиваются солями хрома. Эти клетки делятся на два вида: · крупные светлые клетки-продуценты гормона адреналина (А-клетки), содержащие в цитоплазме умеренно электронноплотные гранулы; · темные мелкие хроматоффиноциты (НА-клетки), содержащие большое число плотных гранул, они секретируют норадреналин. · БИЛЕТ № 14 1. Органеллы: определение, классификация. Строение и функциональная роль эндоплазматической сети и пластинчатого комплекса. 2. Гладкая мышечная ткань: топография, генез, морфофункциональные особенности, регенерация. 3. Головной мозг: отделы, серое и белое вещество, тканевой состав, развитие. Кора полушарий мозга: цито- и миелоархитектоника, понятие о модуле (вертикальные колонки). Возрастные особенности строения коры. Классификация органелл: общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки. Они в свою очередь делятся на: · мембранные органеллы: митохондрии, эндоплазматическая сеть, пластинчатый комплекс, лизосомы, пероксисомы; · немембранные органеллы: рибосомы, клеточный центр, микротрубочки, микрофибриллы, микрофиламенты. Специальные органеллы, имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток. Специальные органеллы делятся на: · цитоплазматические — миофибриллы, нейрофибриллы, тонофибриллы; · органеллы клеточной поверхности — реснички, жгутики. Общая характеристика мембранных органелл · Все разновидности мембранных органелл имеют общий принцип строения: · они представляют собой замкнутые и изолированные участки в гиалоплазме (компарменты), имеющие свою внутреннюю среду; · стенка их состоит из билипидной мембраны и белков, подобно плазмолемме. · Однако билипидные мембраны органелл имеют и некоторые особенности: · толщина билипидных мембран органелл меньше (7 нм), чем в плазмолемме (10 нм); · мембраны отличаются по количеству и качеству белков, встроенных в мембраны. Эндоплазматическая сеть в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка этих образований состоит из билипидной мембраны и включенных в нее некоторых белков и отграничивает внутреннюю среду эндоплазматической сети от гиалоплазмы. Различают две разновидности эндоплазматической сети: · зернистая (гранулярная или шероховатая); · незернистая или гладкая. На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы. Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы — диктиосомы. Функции пластинчатого комплекса: · транспортная — выводит из клетки, синтезированные в ней продукты; · конденсация и модификация веществ, синтезированных в зернистой эндоплазматической сети; · образование лизосом (совместно с зернистой эндоплазматической сетью); · участие в обмене углеводов; · синтез молекул, образующих гликокаликс цитолеммы; · синтез, накопление и выведение муцина (слизи); · модификация мембран, синтезированных в эндоплазматической сети и превращение их в мембраны плазмолеммы. Подавляющая часть гладкой мышечной ткани организма (внутренних органов и сосудов) имеет мезенхимальное происхождение. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и сосудов является миоцит. Представляет собой чаще всего веретенообразную клетку (длиной 20—500 мкм, диаметром 5—8 мкм), покрытую снаружи базальной пластинкой, но встречаются и отростчатые миоциты. В центре располагается вытянутое ядро, по полюсам которого локализуются общие органеллы: зернистая эндоплазматическая сеть, пластинчатый комплекс, митохондрии, цитоцентр. Механизм сокращения в миоцитах в принципе сходен с сокращением саркомеров в миофибриллах в скелетных мышечных волокнах. Он осуществляется за счет взаимодействия и скольжения актиновых миофиламентов вдоль миозиновых. Миоциты окружены снаружи рыхлой волокнистой соединительной тканью — эндомизием и связаны друг с другом боковыми поверхностями. При этом, в области тесного контакта соседних миоцитов базальные пластинки прерываются. Миоциты соприкасаются непосредственно плазмолеммами и в этих местах имеются щелевидные контакты, через которые осуществляется ионная связь и передача биопотенциала с одного миоцита на другой, что приводит к одновременному и содружественному их сокращению. В эндомизии проходят кровеносные капилляры, обеспечивающие трофику миоцитов, а в прослойках соединительной ткани между пучками и слоями миоцитов в перимизии проходят более крупные сосуды и нервы, а также сосудистые и нервные сплетения. Регенерация гладкой мышечной ткани осуществляется несколькими способами: · посредством внутриклеточной регенерации гипертрофии при усилении функциональной нагрузки; · посредством митотического деления миоцитов при их повреждении (репаративная регенерация); · посредством дифференцировки из камбиальных элементов — из адвентициальных клеток и миофибробластов.
Головной мозг состоит из ствола мозга, который является продолжением спинного мозга (включает продолговатый, задний, средний и промежуточный мозг) и плащевой части, образованной полушариями большого мозга и мозжечком. От ствола отходят десять пар (с 3 по 12) черепных нервов, ядра которых располагаются в пределах продолговатого и среднего мозга. Ядра ствола мозга подразделяются на чувствительные, двигательные и ассоциативные. 1. Чувствительные ядра являются гомологами ядер задних рогов спинного мозга — в них сосредоточены тела и дендриты мультиполярных вставочных нейронов, на которых оканчиваются аксоны псевдоуниполярных или биполярных клеток, несущие сенсорную информацию. 2. Двигательные ядра содержат мотонейроны, аксоны которых оканчиваются на волокнах соматической мускулатуры. К двигательным ядрам часто относят и вегетативные ядра продолговатого и среднего мозга, содержащие тела нейронов, аксоны которых образуют преганглинарные волокна, направляющиеся в парасимпатические нервные узлы в составе 3, 7, 9, 10 пар черепно-мозговых нервов. 3. Ассоциативные (переключательные, релейные) ядра содержат скопления ассоциативных мультиполярных клеток, которые обеспечивают формирование многонейронных рефлекторных дуг путем переключения нервных импульсов, идущих к коре полушарий или мозжечка, или в обратном направлении от коры к стволу мозга и центрам спинного мозга. Белое вещество ствола мозга имеет то же гистологическое строение, что и в спинном мозге и состоит из пучков нервных волокон, образующих восходящие и нисходящие тракты, которые связывают разные отделы центральной нервной системы. Наряду с особенностями топографии и строения, отдельные ядра ствола мозга и его проводящие пути различаются химической спецификой нейромедиаторов. Кора больших полушарий мозга представляет собой высший и наиболее сложно организованный нервный центр экранного типа, деятельность которого обеспечивает регуляцию разнообразных функций организма и сложные формы поведения. Кора образована слоем серого вещества толщиной 3—5 мм на поверхности извилин (30 %) и в глубине борозд (70 %) общей площадью 1500—2500 см2 при объеме около 300 см3. Серое вещество содержит нервные клетки (около 10—15 млрд.), нервные волокна и клетки нейроглии (более 100 млрд.). Цитоархитектоника коры полушарий большого мозга. I. Молекулярный слой располагается под мягкой мозговой оболочкой; содержит сравнительно небольшое число мелких нейронов — горизонтальных клеток Кахаля с длинными ветвящимися дендритами, отходящими в горизонтальной плоскости от веретеновидного тела. II. Наружный зернистый слой образован многочисленными мелкими пирамидными и звездчатыми клетками, дендриты которых ветвятся и поднимаются в молекулярный слой, а аксоны либо уходят в белое вещество, либо образуют дуги и также направляются в молекулярный слой. III. Пирамидный слой значительно варьирует по ширине и максимально выражен в ассоциативных и сенсомоторных областях коры. В нем преобладают пирамидные клетки, размеры которых увеличиваются вглубь слоя от мелких до крупных. IV. Внутренний зернистый слой широкий в зрительной и слуховой областях коры, а в сенсомоторной области практически отсутствует. V. Ганглионарный слой образован крупными, а в области моторной коры (прецентральной извилины) — гигантскими пирамидными клетками. VI. Слой полиморфных клеток образован разнообразными по форме нейронами (веретеновидными, звездчатыми, клетками Мартинотти). Наружные участки слоя содержат более крупные клетки, внутренние — более мелкие и редко расположенные. Миелоархитектоника и организация коры. Нервные волокна коры полушарий большого мозга включают три группы: · афферентные; · ассоциативные и комиссуральные; · эфферентные волокна. Афферентные волокна в виде пучков в составе радиальных лучей приходят в кору от ниже расположенных отделов головного мозга, в частности, от зрительных бугров и коленчатых тел. Большая часть этих волокон заканчивается на уровне IV слоя. Ассоциативные и комиссуральные волокна — внутрикорковые волокна, которые соединяют между собой различные области коры в том же или в другом полушариях, соответственно. Эфферентные волокна связывают кору с подкорковыми образованиями. Эти волокна идут в нисходящем направлении в составе радиальных лучей (например, пирамидные пути. Модульный принцип организации коры полушарий большого мозга. В коре полушарий большого мозга описаны повторяющиеся блоки (модули) нейронов, которые рассматриваются как ее морфофункциональные единицы, способные к относительно автономной деятельности. Они имеют форму цилиндров, или колонок, диаметром 200—300 мкм (по некоторым данным, до 500 мкм и более), проходящих вертикально через всю толщу коры. В коре большого мозга человека имеется около 2—3 млн. таких колонок, каждая содержит примерно 5000 нейронов. Внутри колонки выделяют также более мелкие мини-колонки, включающие структуры, непосредственно окружающие апикальные дендриты пирамидных клеток.Колонка включает в себя следующие структуры: · афферентные пути; · систему локальных связей; · эфферентные пути.
БИЛЕТ № 15 1. Репродукция клеток: способы, морфологическая характеристика. 2. Диффузная эндокринная система: составные компоненты, локализация, классификация. Примеры эндокринных клеток и их гормонов. 3. Пищевод: строение, тканевой состав, источники развития. Особенности органогенеза пищевода и их значение для клиники. Глотка: отделы, их строение, функциональная роль.
Различают два основных способа размножения клеток: · митоз (кариокенез) — непрямое деление клеток, которое присуще в основном соматическим клеткам; · мейоз или редукционное деление — характерно только для половых клеток. · амитозили прямое деление клеток, которое осуществляется посредством перетяжки ядра и цитоплазмы, с образованием двух дочерних клеток или одной двуядерной, характерен только для старых и дегенерирующих клеток и является отражением патологии клетки. Митоз подразделяется на 4 фазы: 1. Профаза характеризуется морфологическими изменениями ядра и цитоплазмы. В ядре происходит: конденсация хроматина и образование хромосом, состоящих из двух хроматид, исчезновение ядрышка, распад кариолеммы на отдельные пузырьки. В цитоплазме отмечается редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки, формирование из микротрубочек веретена деления, репродукция зернистой эндоплазматической сети, а также уменьшение числа свободных и прикрепленных рибосом. 2. В метафазе происходит образование метафазной пластинки, или материнской звезды, неполное обособление сестринских хроматид друг от друга. 3. Анафаза характеризуется полным обособлением (расхождением) хроматид и образованием двух равноценных диплоидных наборов хромосом, расхождением хромосомных наборов к полюсам митотического веретена и расхождением самих полюсов. 4. Телофаза характеризуется деконденсацией хромосом каждого хромосомного набора, формированием из пузырьков ядерной оболочки, цитотомией перетяжкой двуядерной клетки на две дочерние самостоятельные клетки, появлением ядрышка в ядрах дочерних клеток. Интерфаза подразделяется на 3 периода: 7. В G1 (пресинтетическом) периоде происходит усиленное формирование синтетического аппарата клетки — увеличение числа рибосом, а также количества различных видов РНК (информационной, рибосомальной, транспортных); 8. Для S-периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки. 9. G2-период (постсинтетический, или премитотический) характеризуется усиленным синтезом информационной РНК, а также усиленным синтезом всех клеточных белков, но особенно белков-тубулинов, необходимых для последующего (в профазе митоза) формирования митотического веретена деления. Клетки некоторых тканей (например, клетки печеночной ткани — гепатоциты), по выходе из митоза, вступают в так называемый G0-период, во время которого они выполняют свои многочисленные функции в течении многих лет, не вступая в S-период. Клетки относятся к редко делящимся клеткам, и их жизненный цикл подразделяется на митоз, J0-период, S-период, J2-период. Кроме рассмотренных двух основных способов размножения (репродукции) клеток различают еще третий способ — эндорепродукцию, который, хотя и не приводит к увеличению числа клеток, однако приводит к увеличению числа работающих структур и увеличению функциональной способности клетки. Именно поэтому он и называется эндорепродукцией. Диффузная эндокринная система (ДЭС) — отдел эндокринной системы (нейроэндокринной системы), представленный рассеянными в различных органах эндокринными клетками, продуцирующими агландулярные гормоны (пептиды, за исключением кальцитриола). Ключевые признаки ДЭС: 1 ) диффузное (разбросанное) расположение её клеток в отличие от секретирующих клеток эндокринных желёз, собранных в одном месте в составе железы; 2) производство управляющих веществ в виде биогенных аминов и/или пептидных гормонов. Биологически активные соединения, образующиеся в клетках ДЭС, выполняют эндокринную, нейрокринную, нейроэндокринную, а также паракринную функции. Целый ряд свойственных им соединений (вазоактивный интестинальный пептид, нейротензин и другие) высвобождаются не только из клеток ДЭС, но также и из нервных окончаний. ДЭС образована апудоцитами (APUD-клетками) - это секретирующие клетки, способные поглощать аминокислоты-предшественницы и производить из них активные амины и/или низкомолекулярные пептиды с помощью реакции декарбоксилирования (удаления карбоксильной группы у аминокислоты-предшественницы). Деление сигнальных веществ по месту синтеза следует считать лишь попыткой их систематизации: например, почти все представленные ниже пептидные гормоны могут синтезироваться не только в соответствующих периферических тканях, но и в центральной нервной системе, вегетативной нервной системе и иммунными клетками; яичко, надпочечники, железистые клетки ЖКТ и нервные клетки вегетативной нервной системы могут синтезировать также те пептиды, которые сначала были обнаружены в нервной системе и получили, таким образом, название нейропептиды. Функции пищевода: · моторно-эвакуаторная; · секреторная — выработка слизи, облегчающей проведение пищевого комка; · барьерно-защитная. Пищевод — орган слоистого типа. Слизистая оболочка образует, продольные складки и состоит из трех слоев: эпителиального, собственной пластинки и мышечной пластинки. Эпителиальный слой — многослойный плоский неороговевающий эпителий, образованный базальным, шиповатым и слоем плоских клеток. Собственная пластинка слизистой оболочки образована рыхлой волокнистой соединительной тканью. Ее основные структуры — кровеносные и лимфатические сосуды, нервные волокна, одиночные лимфоидные фолликулы, выводные протоки собственных желез пищевода и концевые отделы кардиальных желез пищевода. Мышечная пластинка слизистой оболочки образована продольными пучками гладкой мышечной ткани. Она участвует в формировании складок, облегчает прохождение грубых комков пищи. Подслизистая оболочка образована рыхлой волокнистой соединительной тканью и участвует в образовании складок слизистой оболочки, обеспечивает ее питание и подвижность. Мышечная оболочка образована внутренним циркулярным и наружным продольным слоями. В верхней трети — поперечнополосатой, в средней трети поперечнополосатой, и гладкой, в нижней трети — только гладкой мышечной тканью. Циркулярный слой мышечной оболочки образует верхний и нижний сфинктеры пищевода. Функция оболочки — продвижение пищи к желудку. Между слоями мышечной оболочки находится межмышечное нервное сплетение Ауэрбаха. Серозная оболочка входит в состав стенки пищевода только в его поддиафрагмальном отделе. Образована двумя слоями: внутренний — рыхлая волокнистая соединительная ткань, наружный — мезотелий. На остальной части наружная оболочка представлена адвентицией, содержащей множество сосудов и нервное сплетение.
БИЛЕТ № 16 1. Немембранные органеллы: строение, функциональная роль. Специальные органеллы. 2. Рыхлая волокнистая неоформленная соединительная ткань: клеточные популяции, межклеточное вещество, локализация в организме. Строение и функции фибробластов и макрофагов. 3. Артерии: определение, классификация, функции. Строение различных типов артерий. Возрастные особенности Строение и функции немембранных органелл. Рибосомы - аппараты синтеза белка и полипептидных молекул. По локализации подразделяются на: · свободные находятся гиалоплазме; · несвободные или прикрепленные связаны с мембранами эндоплазматической сети. Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка рибонуклеопротеида, которые образуются в ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной или информационной РНК объединяются в цепочки рибосом — полисомы. Свободные и прикрепленные рибосомы, помимо отличия в их локализации, отличаются определенной функциональной специфичностью: свободные рибосомы синтезируют белки для внутренних нужд клетки (белки-ферменты, структурные белки), прикрепленные синтезируют белки "на экспорт". Клеточный центр - цитоцентр, центросома, центриоли. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов: · диплосомы; · центросферы. Микрофибриллы или промежуточные филаменты, представляют собой тонкие (10 нм) неветвящиеся нити, локализующиеся преимущественно в кортикальном (подмембранном) слое цитоплазмы. Функциональная роль микрофибрилл состоит в участии, наряду с микротрубочками, в формировании клеточного каркаса, выполняя опорную функцию. Характеристика рыхлой волокнистой соединительной ткани. Она состоит из клеток и межклеточного вещества, которое в свою очередь состоит из волокон (коллагеновых, эластических, ретикулярных) и аморфного вещества. Морфологические особенности, отличающие рыхлую волокнистую соединительную ткань от других разновидностей соединительных тканей: · многообразие клеточных форм (9 клеточных типов); · преобладание в межклеточном веществе аморфного вещества над волокнами. Функции рыхлой волокнистой соединительной ткани: · трофическая; · опорная - образует строму паренхиматозных органов; · защитная — неспецифическая и специфическая (участие в иммунных реакциях) защита; · депо воды, липидов, витаминов, гормонов; · репаративная (пластическая). Функционально ведущими структурными компонентами рыхлой волокнистой соединительной ткани являются клетки различной морфологии и функции, которые и будут рассмотрены в первую очередь, а затем уже межклеточное вещество. I.Фибробласты — преобладающая популяция клеток рыхлой волокнистой соединительной ткани. Они неоднородны по степени зрелости и функциональной специфичности и потому подразделяются на следующие субпопуляции: · малодифференцированные клетки; · дифференцированные или зрелые клетки, или собственно фибробласты; · старые фибробласты (дефинитивные)фиброциты, а также специализированные формы фибробласты; · миофибробласты; · фиброкласты. II. Макрофаги — клетки, осуществляющие защитную функцию, прежде всего посредством фагоцитоза крупных частиц, откуда и происходит их название. Однако фагоцитоз, хотя и важная, но далеко не единственная функция этих клеток. По современным данным макрофаги являются полифункциональными клетками. Образуются макрофаги из моноцитов крови после их выхода из кровеносного русла. Макрофаги характеризуются структурной и функциональной гетерогенностью в зависимости от степени зрелости, от области локализации, а также от их активации антигенами или лимфоцитами. Прежде всего, они подразделяются на фиксированные и свободные (подвижные). Макрофаги соединительной ткани являются подвижными или блуждающими и называются гистиоцитами. Защитная функция макрофагов проявляется в разных формах: · неспецифическая защита — защита посредством фагоцитоза экзогенных и эндогенных частиц и их внутриклеточного переваривания; · выделение во внеклеточную среду лизосомальных ферментов и других веществ: пирогена, интерферона, перекиси водорода, синглетного кислорода и другие; · специфическая или иммунологическая защита — участие в разнообразных иммунных реакциях.
Артерии эластического типа. К таким сосудам относятся аорта и легочная артерии, они выполняют транспортную функцию и функцию поддержания давления в артериальной системе во время диастолы. В этом типе сосудов сильно развит эластический каркас, который дает возможность сосудам сильно растягиваться, сохраняя при этом целостность сосуда. Артерии эластического типа построены по общему принципу строения сосудов и состоят из внутренней, средней и наружной оболочек. Внутренняя оболочка достаточно толстая и образована тремя слоями: эндотелиальным, подэндотелиальным и слоем эластических волокон. В эндотелиальном слое клетки крупные, полигональные, они лежат на базальной мембране. Подэндотелиальный слой образован рыхлой волокнистой неоформленной соединительной тканью, в которой много коллагеновых и эластических волокон. Средняя оболочка состоит в основном из эластических элементов. Они образуют у взрослого человека 50—70 окончатых мембран, которые лежат друг от друга на расстояния 6—18 мкм и имеют толщину 2,5 мкм каждая. Наружная адвентициальная оболочка относительно тонкая, состоит из рыхлой волокнистой неоформленной соединительной ткани, содержит толстые эластические волокна и пучки коллагеновых волокон, идущие продольно или косо, а также сосуды сосудов и нервы сосудов, образованные миелиновыми и безмиелиновыми нервными волокнами. Артерии смешанного (мышечно-эластического) типа. Примером артерии смешанного типа является подмышечная и сонная артерии. Так как в этих артериях постепенно происходит снижение пульсовой волны, то наряду с эластическим компонентом они имеют хорошо развитый мышечный компонент для поддержания этой волны. Толщина стенки по сравнению с диаметром просвета у этих артерий значительной увеличивается. Внутренняя оболочка представлена эндотелиальным, подэндотелиальным слоями и внутренней эластической мембраной. В средней оболочке хорошо развиты как мышечный, так и эластический компоненты. Наружная оболочка образована рыхлой волокнистой неоформленной соединительной тканью, в которой встречаются пучки гладких миоцитов, и наружной эластической мембраной, лежащей сразу за средней оболочкой. Наружная эластическая мембрана выражена несколько слабее, чем внутренняя. Артерии мышечного типа. К этим артериям относятся артерии малого и среднего калибра, лежащие вблизи органов и внутриорганно. В этих сосудах сила пульсовой волны существенно снижается, и возникает необходимость создания дополнительных условий по продвижению крови, поэтому в средней оболочке преобладает мышечный компонент. Внутренняя оболочка имеет небольшую толщину и состоит из эндотелиального, подэндотелиального слоев и внутренней эластической мембраны. Их строение в целом такое же, как в артериях смешанного типа, причем внутренняя эластическая мембрана состоит из одного слоя эластических клеток. Средняя оболочка состоит из гладких миоцитов, расположенных по пологой спирали, и рыхлой сети эластических волокон, также лежащих спирально. Спиральное расположение миоцитов способствует большему уменьшению просвета сосуда. Эластические волокна сливаются с наружной и внутренней эластическими мембранами, образуя единый каркас. Наружная оболочка образована наружной эластической мембраной и слоем рыхлой волокнистой неоформленной соединительной тканью. В ней содержатся кровеносные сосуды сосудов, симпатические и парасимпатические нервные сплетения.
БИЛЕТ № 17(лимфатический узел,семенник) 1. Объекты и методы исследования в гистологии. 2. Покровный эпителий: генетическая и морфофункциональная классификации, топография. З. Молочная железа: строение, тканевой состав, развитие, регуляция лактации. Основным объектом изучения гистологии является организм здорового человека. Основным методом исследования биологических объектов, используемым в гистологии, является микроскопирование, т. е. изучение гистологических препаратов под микроскопом. Различают следующие виды микроскопии: · световая микроскопия (разрешающая способность 0,2 мкм) наиболее распространенный вид микроскопии; · ультрафиолетовая микроскопия (разрешающая способность 0,1 мкм); · люминесцентная (флюоресцентная) микроскопия для определения химических веществ в рассматриваемых структурах; · фазово-контрастная микроскопия для изучения структур в неокрашенных гистологических препаратов; · поляризационная микроскопия для изучения, главным образом, волокнистых структур; · микроскопия в темном поле для изучения живых объектов; · микроскопия в падающем свете для изучения толстых объектов; · электронная микроскопия (разрешающая способность до 0,1—0,7 нм) Гистохимические и цитохимические методы позволяет определять состав химических веществ, и даже их количество в изучаемых структурах. Метод гистоавторадиографии позволяет выявить состав химических веществ в структурах и интенсивность обмена по включению радиоактивных изотопов в изучаемые структуры. Метод дифференциального центрифугирования позволяет изучать отдельные органеллы или даже фрагменты, выделенные из клетки. Метод интерферометрии позволяет определить сухую массу веществ в живых или фиксированных объектах. Иммуноморфологические методы позволяет с помощью предварительно проведенных иммунных реакций, на основании взаимодействия антиген-антитело, определять субпопуляции лимфоцитов, определять степень чужеродности клеток, проводить гистологическое типирование тканей и органов (определять гистосовместимость) для трансплантации органов. Метод культуры клеток (in vitro, in vivo) выращивание клеток в пробирке или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.
Морфологическая классификация покровных эпителиев: · однослойный плоский эпителий (эндотелий — выстилает все сосуды; мезотелий — выстилает естественные полости человека: плевральную, брюшную, перикардиальную); · однослойный кубический эпителий — эпителий почечных канальцев; · однослойный однорядный цилиндрический эпителий — ядра располагаются на одном уровне; · однослойный многорядный цилиндрический эпителий — ядра располагаются на разных уровнях (легочный эпителий); · многослойный плоский ороговевающий эпителий — кожа; · многослойный плоский неороговевающий эпителий — полость рта, пищевод, влагалище; · переходный эпителий — форма клеток этого эпителия зависит от функционального состояния органа, например, мочевой пузырь. Генетическая классификация эпителиев: · эпидермальный тип, развивается из эктодермы — многослойный и многорядный эпителий, выполняет защитную функцию; · энтеродермальный тип, развивается из энтодермы — однослойный цилиндрический эпителий, осуществляет процесс всасывания веществ; · целонефродермальный тип — развивается из мезодермы — однослойный плоский эпителий, выполняет барьерную и экскреторную функции; · эпендимоглиальный тип, развивается из нейроэктодермы, выстилает полости головного и спинного мозга; · ангиодермальный тип — эндотелий сосудов, развивается из мезенхимы.
Грудные, или молочные железы являются отличительной чертой представителей класса млекопитающих. Молочные железы — это видоизменённые потовые железы, и у первозверей молочные железы по своему строению почти не отличаются от потовых. У человека молочные железы есть как у женщин, так и у мужчин. По своей структуре они идентичны, различаются лишь степенью развития. До начала полового созревания грудь девочек и мальчиков ничем не отличается. Молочная железа (glandula mammaria или mamma) — парный орган, относящийся к типу апокринных желёз кожи. У половозрелой женщины молочные железы образуют два симметричных полушаровидных возвышения, прилегающих к передней грудной стенке в области между третьим и шестым или седьмым ребром. Большей частью своего основания каждая железа прикреплена к большой грудной мышце (m. pectoralis major) и частично к передней зубчатой мышце (m. serratus anterior). С наружной стороны между молочными железами имеется углубление, называемое пазухой (sinus mammarum). Немного ниже середины каждой груди, примерно на уровне четвёртого межрёберного промежутка или пятого ребра, на поверхности имеется небольшой выступ — грудной сосок (papilla mammae). Как правило, у нерожавших женщин сосок имеет конусообразную форму, у рожавших — цилиндрическую. Он окружён так называемой ареолой диаметром 3—5 сантиметров. Пигментация кожи соска и ареолы отличается от остальной кожи — она заметно более тёмная. Во время беременности интенсивность пигментации усиливается. В околососковом кружке имеется некоторое количество небольших рудиментарных молочных желёз, так называемых желёз Монтгомери, образующих вокруг соска небольшие возвышения. Кожа соска покрыта мелкими морщинами. У верхушки соска находятся небольшие отверстия — млечные поры, которые представляют собой окончания молочных протоков, идущих от верхушек молочных долей. Диаметр молочных протоков от 1,7 до 2,3 мм. Некоторые молочные протоки сливаются между собой, поэтому количество молочных отверстий всегда меньше количества протоков (обычно их бывает от 8 до 15). Собственно молочная, составляющая основу женской груди и называемая также телом молочной железы, представляет собой плотное тело в форме выпуклого диска, окружённое слоем жира. Тело молочной железы состоит из 15—20 отдельных конусообразных долей, расположенных радиально вокруг грудного соска, обращённых верхушкой к нему и разделённых между собой прослойками соединительной ткани. Каждая доля, в свою очередь, состоит из более крупных и более мелких долек. Каждая долька состоит из альвеол диаметром 0,05—0,07 мм. Кровоснабжение молочных желёз осуществляется в основном внутренней грудной и боковой грудной артериями. Во время менструального цикла молочная железа подвержена циклическим изменениям, однако наибольшие изменения происходят в период беременности. Молочная железа обычно имеет размер в поперечнике в среднем 10—12 см, в толщину 2—3 см. В период лактации вес молочной железы увеличивается до 300—900 г. Во время беременности железа постепенно начинает выделять так называемое молозиво, которое постепенно с развитием беременности изменяет, свои свойства и становится всё более похожим на молоко. В первые дни после родов выделяется так называемое переходное молоко, которое, как правило, гуще и желтее обычного грудного молока. Нормальное зрелое женское молоко — это чисто белая или голубовато-белая жидкость без запаха со слабым сладковатым вкусом, жирность около 4 %. Женское молоко также содержит соли и микроэлементы, необходимые для здорового роста новорожденного.
БИЛЕТ № 18 1. Немембранные органеллы: строение, функции. Специальные органеллы. 2.Поперечнополосатая сердечная ткань: источники развития, структурно- функциональная единица: разновидности, строение, регенерация. 3. Щитовидная и околощитовидные железы: источники развития, строение, гормоны, регуляция. Особенности секреторного цикла тироцитов. Строение и функции немембранных органелл. Рибосомы - аппараты синтеза белка и полипептидных молекул. По локализации подразделяются на: · свободные находятся гиалоплазме; · несвободные или прикрепленные связаны с мембранами эндоплазматической сети. Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка рибонуклеопротеида, которые образуются в ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной или информационной РНК объединяются в цепочки рибосом — полисомы. Свободные и прикрепленные рибосомы, помимо отличия в их локализации, отличаются определенной функциональной специфичностью: свободные рибосомы синтезируют белки для внутренних нужд клетки (белки-ферменты, структурные белки), прикрепленные синтезируют белки "на экспорт". Клеточный центр - цитоцентр, центросома, центриоли. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов: · диплосомы; · центросферы. Микрофибриллы или промежуточные филаменты, представляют собой тонкие (10 нм) неветвящиеся нити, локализующиеся преимущественно в кортикальном (подмембранном) слое цитоплазмы. Функциональная роль микрофибрилл состоит в участии, наряду с микротрубочками, в формировании клеточного каркаса, выполняя опорную функцию. Сердечная поперечнополосатая мышечная ткань. Структурно-функциональной единицей является клетка — кардиомиоцит. По строению и функциям кардиомиоциты подразделяются на две основные группы: · типичные или сократительные кардиомиоциты, образующие своей совокупностью миокард; · атипичные кардиомиоциты, составляющие проводящую систему сердца и подразделяющиеся в свою очередь на три разновидности. Сократительный кардиомиоцит представляет собой почти прямоугольную клетку 50—120 мкм в длину, шириной 15—20 мкм, в центре которой локализуется обычно одно ядро. Покрыт снаружи базальной пластинкой. В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии. Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующими канальцами. Вторая разновидность кардиомиоцитов — атипичные кардиомиоциты образуют проводящую систему сердца, состоящую из: · синусо-предсердный узел; · предсердно-желудочковый узел; · предсердно-желудочковый пучок (пучок Гиса) ствол, правую и левую ножки; · концевые разветвления ножек — волокна Пуркинье. Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их проведение и передачу на сократительные кардиомиоциты. По своей морфологии атипичные кардиомиоциты отличаются от типичным рядом особенностей: · они крупнее (длина 100 мкм, толщина 50 мкм); · в цитоплазме содержимся мало миофибрилл, которые расположены неупорядочено и потому атипичные кардиомиоциты не имеют поперечной исчерченности; · плазмолемма не образует Т-канальцев; · во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты. Атипичные кардиомиоциты различных отделов проводящей системы отличаются между собой по структуре и функциям и подразделяются на три основные разновидности: · Р-клетки (пейсмекеры) водители ритма (I типа); · переходные клетки (II типа); · клетки пучка Гиса и волокон Пуркинье (III тип). Иннервация сердечной мышечной ткани. Биопотенциалы сократительные кардиомиоциты получают из двух источников: · из проводящей системы сердца (прежде всего из синусо-предсердного узла); · из вегетативной нервной системы (из ее симпатической и парасимпатической части). Регенерация сердечной мышечной ткани. Кардиомиоциты регенерируют только по внутриклеточному типу. Пролиферации кардиомиоцитов не наблюдается. Камбиальные элементы в сердечной мышечной ткани отсутствуют. При поражении значительных участков миокарда (в частности, при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубцов (пластическая регенерация). Естественно, что сократительная функция в этих участках отсутствует. Поражение проводящей системы сопровождается нарушением ритма сердечных сокращений.
Щитовидная железа вырабатывает несколько гомонов: · тиреоидные гормоны — тетрайодтиронин и трийодтиронин. Они регулируют основной обмен, а также процессы развития, роста и дифференцировки тканей. Тиреоидные гормоны ускоряют катаболизм белков (с одновременной активацией из синтеза), жиров и углеводов, увеличивают потребление кислорода клетками. Мишенями тиреоидных гормонов являются практически все клетки организма; · в щитовидной железе находятся клетки, вырабатывающие гормоны тирокальцитонин, соматостатин и серотонин. Тирокальцитонин является функциональным антагонистом гормона паращитовидных желез паратирина. Они понижают уровень кальция в крови в результате стимуляции клеток костной ткани (остеобластов). При этом кальций откладывается в костях, что приводит к их повышенной минерализации. Одновременно тирокальцитонин стимулирует экскрецию кальция почками. Соматостатин подавляет рост и размножение клеток, секрецию ряда других желез, а серотонин обладает множественными эффектами: регулирует функцию ряда эндо - и экзокринных желез, микроциркуляцию, функции соединительной ткани, иммунных реакций. Щитовидная железа является паренхиматозным органом дольчатого строения. Строму формирует капсула из плотной неоформленной соединительной ткани и отходящие от нее трабекулы, образованные рыхлой волокнистой неоформленной соединительной тканью. Кроме того, к строме относится поддерживающий паренхиму внутридольковый каркас из рыхлой волокнистой соединительной ткани, содержащий кровеносные, лимфатические сосуды и нервы. Трабекулы делят железу на дольки. Фолликул является структурно-функциональной единицей щитовидной железы. Он образован двумя видами клеток. Основными являются тироциты, кроме которых имеются также парафолликулярные С-клетки. Оба вида клеток лежат на базальной мембране, однако С-клетки своими апикальными полюсами не достигают просвета фолликула. Внутри фолликула находится коллоидоксифильная субстанция, представляющая собой депонированную форму тиреоидных гормонов. Форма тироцитов зависит от функционального состояния железы. Выделяют три фазы секреторного цикла: · биосинтез тироглобулина — органической основы гормонов Т3 и Т4; · выделение тироглобулина в полость фолликула, йодирование органической основы тиреоидных гормонов и депонирование тироглобулина в фолликуле; · выведение гомонов из клетки в кровь, при этом большая часть молекулы тироглобулина остается в тироците. Парафолликулярные клетки (С-клетки) составляют около 0,1 % от общего количества паренхиматозных клеток железы. Их относят к APUD-системе. Они вырабатывают белковые гормоны тирокальцитонин, соматостатин и биогенный амин серотонин. Эти клетки могут входить в состав фолликула, но при этом их апикальные поверхности полости фолликула не достигают. Кроме того, эти клетки входят в состав интерфолликулярных островков, а также лежат изолированно. Интерфолликулярные островки — это скопление тироцитов без полости. Тироциты островков в небольшом количестве продуцируют тиреоидные гормоны. При функциональной нагрузке на железу эти островки могут активироваться, при этом тироциты начинают вырабатывать коллоид, и островок превращается в фолликул. Таким образом, островки являются резервом для образования новых фолликулов. Среди тироцитов островков находятся С-клетки. Паращитовидные железы. Основная функция паращитовидных желез — секреция гормонов: · гормон паратирин, который является антагонистом тирокальцитонина, он повышает уровень кальция в крови двумя способами: · путем разрушения минерального компонента кости за счет активации остеокластов, при этом кальций идет в кровь, где его содержание повышается; · путем активации образования в кишечнике витамина D, которые усиливает всасывание кальция; · биогенные амины; · кальцитонин. Паращитовидная железа — это паренхиматозный орган, паренхима имеет трабекулярное строение. Трабекулы состоят из клеток паратироцитов, которые делятся на два вида: главные (базофильные) и оксифильные. Главные клетки делятся на светлые и темные в зависимости от функционального состояния.
БИЛЕТ №19 1. Строение и функциональная роль мембранных органелл: митохондрий, лизосом, пероксисом. 2. Нервные окончания: определение, классификация, морфологическая классификация рецепторов. Особенности строения эффекторного окончания. 3. Орган слуха: анатомические части, структурные компоненты костного и перепончатого лабиринта, строение спирального органа. Проведение звуковой волны к рецепторным клеткам.
Классификация органелл: общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки. Общая характеристика мембранных органелл · Все разновидности мембранных органелл имеют общий принцип строения: · они представляют собой замкнутые и изолированные участки в гиалоплазме (компарменты), имеющие свою внутреннюю среду; · стенка их состоит из билипидной мембраны и белков, подобно плазмолемме. · Однако билипидные мембраны органелл имеют и некоторые особенности: · толщина билипидных мембран органелл меньше (7 нм), чем в плазмолемме (10 нм); · мембраны отличаются по количеству и качеству белков, встроенных в мембраны. Митохондрии наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью. Стенка митохондрий образована двумя билипидными мембранами, разделенные пространством в 10—20 нм. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутрь митохондрии складки кристы. Лизосомы наиболее мелкие органеллы цитоплазмы (0,2—0,4 мкм) и поэтому открытые только с использованием электронного микроскопа. Представляют собой тельца, ограниченные липидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (50 гидролаз), способных расщеплять любые полимерные соединения (белки, липиды, углеводы и их комплексы) на мономерные фрагменты. Функция лизосом обеспечение внутриклеточного пищеварения, то есть расщепления как экзогенных, так и эндогенных веществ. Пероксисомы - микротельца цитоплазмы (0,1—1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.
Все нервные волокна заканчиваются концевыми аппаратами, которые получили название нервные окончания. По функциональному значению нервные окончания можно разделить на три группы: · эффекторные (эффекторы); · рецепторные (аффекторные или чувствительные); · концевые аппараты, образующие межнейронные синапсы, осуществляющие связь нейронов между собой. Эффекторные нервные окончания представлены двумя типами — двигательные и секреторные. Двигательные нервные окончания — это концевые аппараты аксонов двигательных клеток соматической или вегетативной нервной системы. При их участии нервный импульс передается на ткани рабочих органов. Секреторные нервные окончания имеют простое строение и заканчиваются на железе. Они представляют собой концевые утолщения, или четковидные расширения волокна с синаптическими пузырьками, содержащими главным образом ацетилхолин. Рецепторные нервные окончания. Главная функция афферентных нервных окончаний является восприятие сигналов поступающих из внешней и внутренней среды. Рецептор — это терминальное ветвление дендрита чувствительной (рецепторной) нервной клетки. Классификация рецепторов: I. По происхождению: · Нейросенсорные — нейральный источник происхождения, представляют собой рецепторы нервных клеток — первичночувствительные; · Сенсоэпителиальные — имеют не нейральное происхождение, представлены специальными клетками которые способны воспринимать раздражение — вторичночувствительные, например: инкапсулированные и неинкапсулированные нервные окончания. II. По локализации: · экстерорецепторы; · интерорецепторы; · проприорецепторы. III. По морфологии: · свободные; · несвободные (инкапсулированные: пластинчатые тельца Фатера-Пачини, осязательные тельца Мейснера, концевые колбы Краузе, сухожильные органы Гольджи; неинкапсулированные); IV. По специфичности восприятия (по модальности): · терморецепторы; · барорецепторы; · хеморецепторы; · механорецепторы; · болевые рецепторы; V. По количеству воспринимающих раздражителей: · мономодальные; · полимодальные.
Орган слуха располагается в улитковом канале перепончатого лабиринта по всей его длине. На поперечном срезе этот канал имеет форму треугольника, обращенного к центральному костному стержню улитки. Улитковый канал имеет длину около 3,5 см, делает по спирали 2,5 витка вокруг центрального костного стержня (модиолуса) и слепо заканчивается на вершине. Канал заполнен эндолимфой. Снаружи от улиткового канала находятся пространства, заполненные перилимфой. Эти пространства называются лестницами. Сверху лежит вестибулярная лестница, снизу барабанная. Обе лестницы и улитковый канал окружены костью костной улитки. Стенка улиткового канала, обращенная к вестибулярной лестнице, называется вестибулярной мембраной. На ней находится рецепторный аппарат — кортиев орган. Основу этой стенки составляет базилярная мембрана, покрытая со стороны барабанной лестницы плоским эпителием. Базилярная мембрана состоит из тонких коллагеновых волокон слуховых струн. Эти струны натянуты между спиральной костной пластинкой, отходящей от модиолуса улитки, и спиральной связки, лежащей на наружной стенке улитки. Рецепторные клетки делятся на внутренние и наружные волосковые клетки. Внутренние клетки имеют грушевидную форму. Их ядра лежат в расширенной нижней части. На поверхности суженной апикальной части есть кутикула и проходящие через нее 30—60 коротких стереоцилий, расположенных линейно в три ряда. Волоски неподвижны. Наружные волосковые клетки имеют цилиндрическую форму. На апикальной поверхности этих клеток также имеется кутикула, через которую проходят стереоцилии. Спиральный ганглий находится в основании спиральной костной пластинки, отходящей от модиолуса, которая разделяется на две губы, образуя полость для ганглия. Ганглий построен по общему принципу чувствительных ганглиев. В отличие от спинальных ганглиев его образуют биполярные чувствительные нейроциты. Их дендриты через тоннель подходят к волосковым клеткам, образуя на них нейроэпителиальные синапсы. Аксоны биполярных клеток образуют улитковый нерв. Гистофизиология слуха. Звуки воспринимаются наружным ухом и передаются через слуховые косточки в овальное окно в барабанной и вестибулярной лестницах. При этом приходят в колебательные движения вестибулярная и базилярная мембраны, а, следовательно, и эндолимфа. В результате движения эндолимфы смещаются волоски сенсорных клеток, так как они прикреплены к текториальной мембране. Это приводит к возбуждению волосковых клеток, а через них — биполярных нейронов спирального ганглия, которые передают возбуждение в слуховые ядра ствола мозга, а затем в слуховую зону коры больших полушарий.
БИЛЕТ № 20 1. Дробление: сущность, типы дробления у человека. Развитие и строение бластоцисты. Имплантация: сущность, хронология, изменения в бластоцисте. 2. Кровь. Агранулоциты: разновидности, строение, функции, процентное содержание. Т - и В-лимфоциты, их субпопуляции. 3. Пищеварительная система: составные компоненты, источники развития, функции. Общий план строения пищеварительного канала: отделы, оболочки, слои, тканевой состав, нервные элементы. Дробление — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных. При этом масса зародыша и его объём не меняются, оставаясь такими же, как и в начале дробления. Характерная особенность дробления — ведущая регуляторная роль цитоплазмы в развитии. Характер дробления зависит от количества желтка и его расположения в яйце. Биологическое значение дробления: переход к многоклеточности и увеличение ядерно-цитоплазматического отношения. Дробление как особый этап онтогенеза животных имеет характерные черты, которые свойственны большинству животных, но могут отсутствовать у некоторых групп. 1. Интерфаза сокращена до S-периода; в связи с этим транскрипция собственных генов зародыша полностью подавлена, транскрибируются только запасённые в яйцеклетке материнские мРНК. 2. Между делениями нет периода роста, так что общая масса зародыша не растёт. По всем этим характеристикам дробление млекопитающих резко отклоняется от типичного. Бластомеры делятся у них медленно, синхронность нарушается уже после 1—2 делений, в это же время активируется собственный геном зародыша. Классификация типов дробления. На основе ряда существенных характеристик (степень детерминированности, полнота, равномерность и симметрия деления) выделяют ряд типов дробления. Типы дробления во многом определяются распределением веществ (в том числе, желтка) по цитоплазме яйца и характером межклеточных контактов, которые устанавливаются между бластомерами. Дробление может быть: детерминированным и регулятивным; полным (голобластическим) или неполным (меробластическим); равномерным (бластомеры более-менее одинаковы по величине) и неравномерным (бластомеры не одинаковы по величине, выделяются две — три размерные группы, обычно называемые макро- и микромерами); наконец, по характеру симметрии различают радиальное, спиральное, различные варианты билатеризованных и анархическое дробление. В каждом из этих типов выделяют ряд вариантов. Агранулоциты не содержат гранул в цитоплазме и подразделяются на две различные клеточные популяции - лимфоциты и моноциты. Лимфоциты являются клетками иммунной системы и потому в последнее время все чаще называются иммуноцитами. Лимфоциты (иммуноциты), при участии вспомогательных клеток (макрофагов), обеспечивают иммунитет — защиту организма от генетически чужеродных веществ. Лимфоциты являются единственными клетками крови, способными при определенных условиях митотически делится. Все остальные лейкоциты являются конечными дифференцированными клетками. Лимфоциты весьма гетерогенная (неоднородная) популяция клеток. Классификация лимфоцитов: I. По размерам: · малые 4,5—6 мкм; · средние 7—10 мкм; · большие — больше 10 мкм. В периферической крови около 90 % составляют малые лимфоциты и 10—12 % средние лимфоциты. Большие лимфоциты в нормальных условиях в периферической крови не встречаются. Электронно — микроскопически малые лимфоциты подразделяются на светлые (70—75 %) и темные (12—13 %). Морфология малых лимфоцитов: · относительно крупное круглое ядро, состоящее в основном из гетерохроматина (особенно в мелких темных лимфоцитах); · узкий ободок базофильной цитоплазмы, в которой содержатся свободные рибосомы и слабо выраженные органеллы — эндоплазматическая сеть, единичные митохондрии и лизосомы. Морфология средних лимфоцитов: · более крупное и более рыхлое ядро, состоящее из эухроматина в центре и гетерохроматина по периферии; · в цитоплазме более развиты гранулярная и гладкая эндоплазматическая сеть, пластинчатый комплекс, больше митохондрий. В крови содержится также 1—2 % плазмоцитов, образующихся из В-лимфоцитов. II. По источникам развития лимфоциты подразделяются на: · Т-лимфоциты их образование и дальнейшее развитие связано с тимусом (вилочковой железой); · В-лимфоциты, их развитие у птиц связано с особенным органом — фабрициевой сумкой, а у млекопитающих и человека пока точно не установленным ее аналогом. Кроме источников развития Т- и В-лимфоциты отличаются между собой и по выполняемым функциям. III. По функциям: · а) В-лимфоциты и плазмоциты обеспечивают гуморальный иммунитет — защиту организма от чужеродных корпускулярных антигенов (бактерий, вирусов, токсинов, белков и других); · б) Т-лимфоциты по выполняемым функциям подразделяются на киллеров, хелперов, супрессоров. Киллеры или цитотоксические лимфоциты обеспечивают защиту организма от чужеродных клеток или генетически измененных собственных клеток, осуществляется клеточный иммунитет. Т-хелперы и Т-супрессоры регулируют гуморальный иммунитет: хелперы — усиливают, супрессоры — угнетают. Кроме того, в процессе дифференцировки и Т- и В-лимфоциты вначале выполняют рецепторные функции — распознают соответствующий их рецепторам антиген, а после встречи с ним трансформируются в эффекторные или регуляторные клетки. Моноциты это наиболее крупные клетки крови (18—20 мкм), имеющие круглое бобовидное или подковообразное ядро и хорошо выраженную базофильную цитоплазму, в которой содержатся множественные пиноцитозные пузырьки, лизосомы и другие общие органеллы. По своей функции моноциты являются фагоцитами. Моноциты являются не вполне зрелыми клетками. Они циркулируют в крови 2-е суток, после чего покидают кровеносное русло, мигрируют в разные ткани и органы и превращаются в различные формы макрофагов, фагоцитарная активность которых значительно выше моноцитов. Моноциты и образующиеся из них макрофаги объединяются в единую макрофагическую систему или мононуклеарную фагоцитарную систему (МФС).
Пищеварительная система обеспечивает поступление в организм питательных веществ и расщепление их до мономеров, способных всасываться в кровь и лимфу, а также выведение нерасщепленных и невсосавшихся компонентов пищи. Основными функциями пищеварительной системы являются: · механическая и химическая обработка пищи; · секреторная; · экскреторная; · резорбтивная (всасывание); · барьерно-защитная. Пищеварительная система состоит из двух частей: · органов пищеварительного канала (органы ротовой полости, глотка, пищевод, желудок, тонкий и толстый кишечник); · больших пищеварительных желез (большие слюнные железы, печень с желчным пузырем, поджелудочная железа). В пищевар
Date: 2016-11-17; view: 270; Нарушение авторских прав |