Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Функции дыхательной системы





Дыхательные пути

Различают верхние и нижние дыхательные пути. Символический переход верхних дыхательных путей в нижние осуществляется в месте пересечения пищеварительной и дыхательной систем в верхней части гортани.

Система верхних дыхательных путей состоит из полости носа (лат. cavum nasi), носоглотки (лат. pars nasalis pharyngis) и ротоглотки (лат. pars oralis pharyngis), а также частично ротовой полости, так как она тоже может быть использована для дыхания. Система нижних дыхательных путей состоит из гортани (лат. larynx, иногда её относят к верхним дыхательным путям), трахеи (др.-греч. τραχεῖα (ἀρτηρία)), бронхов (лат. bronchi).

Вдох и выдох осуществляется путём изменения размеров грудной клетки с помощью дыхательных мышц. В течение одного вдоха (в спокойном состоянии) в лёгкие поступает 400—500 мл воздуха. Этот объём воздуха называется дыхательным объёмом (ДО). Такое же количество воздуха поступает из лёгких в атмосферу в течение спокойного выдоха. Максимально глубокий вдох составляет около 2 000 мл воздуха. После максимального выдоха в лёгких остаётся воздух в количестве около 1 500 мл, называемый остаточным объёмом лёгких. После спокойного выдоха в лёгких остаётся примерно 3 000 мл. Этот объём воздуха называется функциональной остаточной ёмкостью (ФОЁ) лёгких. Дыхание — одна из немногих функций организма, которая может контролироваться сознательно и неосознанно. Виды дыхания: глубокое и поверхностное, частое и редкое, верхнее, среднее (грудное) и нижнее (брюшное). Особые виды дыхательных движений наблюдаются при икоте и смехе. При частом и поверхностном дыхании возбудимость нервных центров повышается, а при глубоком — наоборот, снижается.

Дыхательные пути обеспечивают связи окружающей среды с главными органами дыхательной системы — лёгкими. Лёгкие (лат. pulmo, др.-греч. πνεύμων) расположены в грудной полости в окружении костей и мышц грудной клетки. В лёгких осуществляется газообмен между атмосферным воздухом, достигшим лёгочных альвеол (паренхимы лёгких), и кровью, протекающей по лёгочным капиллярам, которые обеспечивают поступление кислорода в организм и удаление из него газообразных продуктов жизнедеятельности, в том числе — углекислого газа. Благодаря функциональной остаточной ёмкости (ФОЁ) лёгких в альвеолярном воздухе поддерживается относительно постоянное соотношение содержания кислорода и углекислого газа, так как ФОЁ в несколько раз больше дыхательного объёма (ДО). Только 2/3 ДО достигает альвеол, который называется объёмом альвеолярной вентиляции. Без внешнего дыхания человеческий организм обычно может прожить до 5-7 минут (так называемая клиническая смерть), после чего наступают потеря сознания, необратимые изменения в мозге и его смерть (биологическая смерть). Восстановление функции внешнего дыхания и кровообращения после наступления биологической смерти ведёт к эффекту зомбирования, когда восстанавливается жизнедеятельность практически всех органов и тканей организма, кроме коры головного мозга.

Функции дыхательной системы

Основные статьи: Физиология внешнего дыхания, Газообмен

Основные функции — дыхание, газообмен.

Кроме того, дыхательная система участвует в таких важных функциях, как терморегуляция, голосообразование, обоняние, увлажнение вдыхаемого воздуха. Лёгочная ткань также играет важную роль в таких процессах как: синтез гормонов, водно-солевой и липидный обмен. В обильно развитой сосудистой системе лёгких происходит депонирование крови. Дыхательная система также обеспечивает механическую и иммунную защиту от факторов внешней среды.

Газообмен — обмен газов между организмом и внешней средой, т. е. дыхание. Из окружающей среды в организм непрерывно поступает кислород, который потребляется всеми клетками, органами и тканями; из организма выделяются образующийся в нём углекислый газ и незначительное количество других газообразных продуктов метаболизма. Газообмен необходим почти для всех организмов, без него невозможен нормальный обмен веществ и энергии, а, следовательно, и сама жизнь. Кислород, поступающий в ткани, используется для окисления продуктов, образующихся в итоге длинной цепи химических превращений углеводов, жиров и белков. При этом образуются CO2, вода, азотистые соединения и освобождается энергия, используемая для поддержания температуры тела и выполнения работы. Количество образующегося в организме и, в конечном итоге, выделяющегося из него CO2 зависит не только от количества потребляемого О2, но и от того, что преимущественно окисляется: углеводы, жиры или белки. Отношение удаляемого из организма CO2 к поглощённому за то же время O2 называется дыхательным коэффициентом, который равен примерно 0,7 при окислении жиров, 0,8 при окислении белков и 1,0 при окислении углеводов. Количество энергии, освобождающееся на 1 л потребленного O2 (калорический эквивалент кислорода), равно 20,9 кДж (5 ккал) при окислении углеводов и 19,7 кДж (4,7 ккал) при окислении жиров. По потреблению O2 в единицу времени и по дыхательному коэффициенту можно рассчитать количество освободившейся в организме энергии. Газообмен (соответственно и расход энергии) у пойкилотермных животных (холоднокровных) понижается с понижением температуры тела. Такая же зависимость обнаружена и у гомойотермных животных (теплокровных) при выключении терморегуляции (в условиях естественной или искусственной гипотермии); при повышении температуры тела (при перегреве, некоторых заболеваниях) газообмен увеличивается. При понижении температуры окружающей среды газообмен у теплокровных животных (особенно у мелких) увеличивается в результате увеличения теплопродукции. Он увеличивается также после приёма пищи, особенно богатой белками (т. н. специфически-динамическое действие пищи). Наибольших величин газообмен достигает при мышечной деятельности. У человека при работе умеренной мощности он увеличивается, через 3–6 мин. после её начала достигает определённого уровня и затем удерживается в течение всего времени работы на этом уровне. При работе большой мощности газообмен непрерывно возрастает; вскоре после достижения максимального для данного человека уровня (максимальная аэробная работа) работу приходится прекращать, так как потребность организма в O2 превышает этот уровень. В первое время после окончания работы сохраняется повышенное потребление O2, используемого для покрытия кислородного долга, то есть для окисления продуктов обмена веществ, образовавшихся во время работы. Потребление O2 может увеличиваться с 200–300 мл/мин. в состоянии покоя до 2000–3000 при работе, а у хорошо тренированных спортсменов — до 5000 мл/мин. Соответственно увеличиваются выделение CO2 и расход энергии; одновременно происходят сдвиги дыхательного коэффициента, связанные с изменениями обмена веществ, кислотно-щелочного равновесия и лёгочной вентиляции. Расчёт общего суточного расхода энергии у людей разных профессий и образа жизни, основанный на определениях газообмена важен для нормирования питания. Исследования изменений газообмена при стандартной физической работе применяются в физиологии труда и спорта, в клинике для оценки функционального состояния систем, участвующих в газообмене. Сравнительное постоянство газообмена при значительных изменениях парциального давления O2 в окружающей среде, нарушениях работы органов дыхания и т. п. обеспечивается приспособительными (компенсаторными) реакциями систем, участвующих в газообмене и регулируемых нервной системой. У человека и животных газообмен принято исследовать в условиях полного покоя, натощак, при комфортной температуре среды (18–22 °C). Количества потребляемого при этом O2 и освобождающейся энергии характеризуют основной обмен. Для исследования применяются методы, основанные на принципе открытой либо закрытой системы. В первом случае определяют количество выдыхаемого воздуха и его состав (при помощи химических или физических газоанализаторов), что позволяет вычислять количества потребляемого O2 и выделяемого CO2. Во втором случае дыхание происходит в закрытой системе (герметичной камере либо из спирографа, соединённого с дыхательными путями), в которой поглощается выделяемый CO2, а количество потребленного из системы O2 определяют либо измерением равного ему количества автоматически поступающего в систему O2, либо по уменьшению объёма системы. Газообмен у человека происходит в альвеолах легких и в тканях тела. Функция внешнего дыхания обеспечивается как дыхательной системой, так и системой кровообращения. Атмосферный воздухпопадает в лёгкие из носоглотки (где предварительно очищается от механических примесей, увлажняется и согревается) черезгортань и трахеобронхиальное дерево (трахею, главные бронхи, долевые бронхи, сегментарные бронхи, дольковые бронхи,бронхиолы и альвеолярные ходы) попадает в лёгочные альвеолы. Дыхательные бронхиолы, альвеолярные ходы и альвеолярные мешочки с альвеолами составляют единое альвеолярное дерево, а вышеуказанные структуры отходящие от одной конечной бронхиолы образуют функционально-анатомическую единицу дыхательной паренхимы лёгкого — а́цинус (лат. ácinus — гроздь). Смена воздуха обеспечивается дыхательной мускулатурой, осуществляющей вдох (набор воздуха в лёгкие) и выдох (удаление воздуха из лёгких). Через мембрану альвеол осуществляется газообмен между атмосферным воздухом и циркулирующей кровью[2]. Далее кровь, обогащённая кислородом возвращается в сердце, откуда по артериям разносится ко всем органам и тканям организма. По мере удаления от сердца и деления, калибр артерий постепенно уменьшается до артериол и капилляров, через мембрану которых происходит газообмен с тканями и органами. Таким образом, граница между внешним и клеточнымдыханием пролегает по клеточной мембране периферических клеток.



Внешнее дыхание человека включает две стадии:

1. вентиляция альвеол,

2. диффузия газов из альвеол в кровь и обратно.

Вентиляция альвеол осуществляется чередованием вдоха (инспирация) и выдоха (экспирация). При вдохе в альвеолы поступаетатмосферный воздух, а при выдохе из альвеол удаляется воздух, насыщенный углекислым газом. Вдох и выдох осуществляется путём изменения размеров грудной клетки с помощью дыхательных мышц.

Клеточное или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов иаминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (АТФ и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа.


Основной (фактически единственной) функцией кислорода является его участие как окислителя в окислительно-восстановительных реакциях в организме. Благодаря наличию кислорода, организмы всех животных способны утилизировать (фактически «сжигать») различные вещества (углеводы, жиры, белки) с извлечением определенной энергии «сгорания» для собственных нужд. В покое организм взрослого человека потребляет 1,8-2,4 г кислорода в минуту. Кислород воздуха служит конечным акцептором водорода при дыхании. Дыхание относится к процессам диссимиляции, при которых происходит распад органических субстратов организма. При этом от них отщепляется водород и освобождается некоторое количество энергии. Однако максимальный ее выход связан с переносом водорода на конечный акцептор, который получает его через дыхательную цепь в митохондриях или глиоксисомах. Этот процесс связан с цепью переноса электронов.

Альвеолярный воздух отличается от атмосферного по концентрации содержащихся в нем газов. В покое поглощение организмом "среднего" взрослого человека кислорода из альвеолярного воздуха составляет от 250 до 300 мл/мин, а выделение углекислого газа от 200 до 250 мл/мин. Кислород в процессе диффузии проходит из просвета альвеолы в кровеносные капилляры через аэрогематический барьер, плазму крови и мембрану эритроцита. Общее расстояние не превышает 5 мкм. CO2 диффундирует в обратном направлении. Диффузия осуществляется благодаря градиенту парциальных давлений О2, и СО2, в альвеолярном воздухе и в крови. Сразу после диффузии в эритроциты О2, связывается с гемоглобином, в результате чего образуется окси-гемоглобин (HbO2), который диффундирует к центру эритроцита, при этом валентность железа не меняется. 1 г гемоглобина связывает 1,34 мл О2. CO2, в эритроцитах также связан с гемоглобином. СО2, диффундирует из эритроцитов только после его освобождения из химической связи. Во время прохождения через легочные капилляры эритроциты захватывают кислород, и в них увеличивается напряжение О2,, в то же время напряжение СО2 в крови снижается. Следует подчеркнуть, что у здорового человека напряжение дыхательных газов в крови становится практически таким же, как их парциальные давления в альвеолах (рис. 186). Окись углерода (CO) обладает гораздо большим сродством к гемоглобину, чем кислород вследствии чего происходит "угар" или отравление угарным газом CO. Дыхательная система поддерживает постоянное напряжение СО2 в крови, обеспечивает функционирование буферных систем крови, поддерживающих pH артериальной крови в узких пределах - от 7,37 до 7,43.

Пищеварение

Питательные вещества. Жизнедеятельность любого организма, в том числе и человека, невозможна без постоянного поступления энергии из внешней среды. Такой энергией для человека является потребляемая пища, содержащая питательные вещества — белки, жиры и углеводы. Питательные вещества — это жизненно необходимые составные части пищи, используемые организмом как пластический материал для построения живого вещества клеток и служащие источником энергии, необходимой для его жизнедеятельности. Организму нужны также минеральные соли, вода, витамины. Все эти вещества также поступают с пищей. Но лишь вода, минеральные соли и витамины усваиваются организмом в том виде, в каком они находятся в пище. Белки, жиры и углеводы, являясь высокомолекулярными соединениями, не могут всасываться в пищеварительном тракте и усваиваться организмом без предварительного расщепления до более простых соединений.

Понятие о пищеварении. Функции пищеварительной системы. Пищеварение — это совокупность процессов, обеспечивающих механическое измельчение пищи, химическое расщепление макромолекул питательных веществ на компоненты, пригодные для всасывания и участия в обмене веществ. Таким образом, функциями пищеварительной системы являются: секреторная, всасывательная, моторная.

Секреторная функция заключается в образовании железистыми клетками пищеварительных соков, содержащих ферменты, которые расщепляют белки, жиры и углеводы. Всасывательная функция осуществляется слизистой оболочкой желудка, тонкого и толстого кишечника. Этот процесс обеспечивает поступление переваренных органических веществ, солей, витаминов и воды во внутреннюю среду организма.Моторная, или двигательная, функция осуществляется мускулатурой пищеварительного тракта и обеспечивает жевание, глотание, передвижение пищи по пищеварительному тракту и удаление непереваренных остатков.

Пищеварительные ферменты и их роль. Главнейшая роль в химической переработке пищи принадлежит ферментам. Они вырабатываются в слюнных железах, желудке, поджелудочной железе, кишечнике. Несмотря на большое разнообразие ферментов, все они обладают некоторыми общими свойствами. Всем ферментам присуща высокая специфичность,заключающаяся в том, что каждый из них катализирует только одну реакцию или действует только на один тип связи. Так,протеазы расщепляют белки, липазы — жиры, а амилазы —углеводы. К протеазам относятся пепсин и химозин желудка, трипсин, химотрипсин, кар-боксипептидаза поджелудочной железы, эрепсин килечного сока. К амилазам принадлежат амилаза и мальтаза слюны, амилаза, мальтаза, лактаза поджелудочного сока. Благодаря высокой специфичности действия ферментов обеспечивается тонкая регуляция всех жизненно важных процессов, протекающих в клетке и организме.

Ферменты активны только при определенных значениях активной реакции среды (рН). Так, пепсин активен только в кислой среде желудка. Напротив, амилазы активны в слабощелочной среде и теряют свою активность в кислой среде.

Ферменты действуют вузком интервале температур, близком к 36—37°С. За пределами этого интервала их активность значительно снижается, что сопровождается нарушением процессов пищеварения.

Ферменты обладают высокой активностью, что позволяет расщеплять большое количество органических веществ.

Строение и функции органов пищеварительной системы. Система органов пищеварения представлена пищеварительным каналом длиной 8—10 м (ротовая полость, глотка, пищевод, желудок, тонкий и толстый кишечник) и пищеварительными железами (слюнные, печень, поджелудочная железа).

Стенка пищеварительного тракта состоит из трех слоев: наружного, среднего и внутреннего. Наружный слой образован волокнистой, соединительной тканью, средний слой— мышечной. В полости рта, глотки и верхней части пищевода он представлен поперечнополосатой, а в остальных отделах — гладкомьипечной тканью, расположенной в два слоя: наружный — продольный, внутренний — кольцевой. Благодаря сокращениям этих мышц (сокращения называются червеобразными или перистальтическими) пища продвигается по пищеварительному каналу и смешивается с пищеварительными соками.

Внутренний слой состоит из слизистого и подслизистого слоев, имеющих обильное крово и лимфо снабжение. Железистые клетки этого слоя выделяют слизь и пищеварительные соки. В нем же диффузно расположены эндокринные клетки, вырабатывающие гормоны, которые регулируют двигательную и секреторную деятельность пищеварительной системы.

Ротовая полость — начальный отдел пищеварительного тракта, функциями которого являются опробывание вкуса и качества пищи, ее измельчение, начало расщепления углеводов, формирование пищевого комка и проталкивание его в следующий отдел. Она образована губами, щеками, нёбом, языком и мышцами дна ротовой полости. Двумя рядами зубов полость делится напреддверие и собственно полость рта. Размельчение пищи осуществляется зубами, сидящими в ячейках (альвеолах) верхней и нижней челюстей.

У человека две смены зубов: молочные и постоянные. Первые молочные зубы (они не имеют корней) прорезываются в шестимесячном возрасте. Их количество равно 20 — по 10 на каждой челюсти. У взрослого человека 32 постоянных зуба: по 4 резца, 2 клыка, 4 малых коренных и 6 больших коренных зубов на каждой челюсти. Резцы и клыки используются для откусывания, а коренные зубы — для размельчения и пережевывания пищи. Каждый зуб имеет коронку, шейку, корень и состоит из плотного костного вещества — дентина. Внутри зуба расположена полость, заполненная зубной мякотью — пульпой, — состоящей из соединительной ткани, кровеносных сосудов и нервов. Коронка зуба выступает над десной и покрыта более прочной, чем дентин, костной тканью — эмалью. Корень зуба лежите зубной альвеоле.

Язык — мышечный орган, в слизистой оболочке которого расположены вкусовые рецепторы, дающие возможность ощутить вкус еды. Он также участвует в перемешивании пищи и проталкивании ее в глотку.

В ротовую полость открываются протоки трех пар слюнных желез: околоушных, подчелюстных и подъязычных. Слюна — прозрачная, слегка вязкая жидкость, имеющая слабощелочную реакцию. В ее состав входят вода (98—99%), неорганические соли (1—1,5%) и органические вещества: белок муцин и ферменты птиалин и мальтаза. Слизистый тягучий муцин обеспечивает пищевому комку легкость проглатывания. Содержащийся в слюне лизоцим выполняет бактерицидную функцию, растворяя клеточную оболочку бактерий. Птиалин расщепляет крахмал пищи до промежуточного вещества — солодового сахара, или мальтозы, который в присутствии фермента мальгазы превращается в простой сахар — глюкозу. Увлажняя пищу, слюна растворяет отдельные ее частицы и этим облегчает воздействие на них ферментов. Количество и состав слюны зависят от характера пищи. Так, например, больше слюны выделяется при потреблении сухой пищи, чем жидкой. В среднем за сутки выделяется около 1—-1,5 л слюны.

Академик И. П. Павлов разработал операцию наложения фистулы выводного протока слюнной железы и показал, что слюна выделяется рефлекторно под действием раздражения пищей рецепторов языка и слизистой оболочки ротовой полости. Возникшее возбуждение затем по вкусовым чувствительным нервным волокнам передается в центр слюноотделения, расположенный в продолговатом мозге, а оттуда по центробежным нервам проводится к слюнным железам, вызывая слюноотделение. Это безусловный, или врожденный, рефлекс. Своими опытами И. П. Павлов также показал, что отделение слюны происходит в ответ на вид пищи, ее запах, при разговоре о ней (условный рефлекс).

Пережеванная и смоченная слюной пища языком проталкивается к глотке, и происходит рефлекторный акт глотания.

Глотка —трубка конической формы (с расширением сверху) длиной около 13 см. Сокращаясь, мощные мышцы стенки глотки проталкивают пищевой комок в пищевод.

Пищевод — мышечная трубка длиной около 25 см, лежащая позади трахеи. Через отверстие в диафрагме пищевод из грудной полости проникает в брюшную полость, где соединяется с желудком. Сокращения мышц пищевода продвигают пищевой комок в желудок.

Желудок — расширенная часть пищеварительной трубки объемом около 1,5—2 л. Размеры и форма желудка изменяются в зависимости от количества принятой пищи и степени сокращения мышц его стенок. В желудке выделяют верхнюю часть —дно,среднюю наибольшую часть —- тело, а также нижнюю горизонтально расположенную часть — привратник. Отверстие привратника ведет в двенадцатиперстную кишку.

Мышцы стенки желудка хорошо развиты и представлены тремя слоями волокон, имеющими разную ориентацию: продольными, кольцевыми (в области перехода привратника в двенадцатиперстную кишку слой утолщается и образует сфинктор, регулирующий продвижение пищи) и косыми. Слизистая оболочка желудка образует складки, увеличивающие ее поверхность. В толще слизистой оболочки содержится большое количество желез, вырабатывающих желудочный сок. Железы состоят из секреторных клеток нескольких типов: главных, вырабатывающих пищеварительные ферменты, обкладочных, секретирующих соляную кислоту, идобавочных, вьделяющих слизь.

В желудке за счет мышечных сокращений происходит перемешивание пищи с желудочным соком — прозрачной жидкостью, имеющей кислую реакцию вследствие присутствия в ней свободной 0,4%-ной соляной кислоты. Она действует как дезинфицирующее средство, уничтожая большинство поступающих с пищей бактерий, а также создает необходимую кислотность среды, при которой становятся активными ферменты желудочного сока. Протеазами желудочного сока являются пепсин и химозин.

Главными клетками желез желудка синтезируется пепсиноген — неактивный предшественник пепсина. В полости желудка в

присутствии соляной кислоты пепсиноген превращается в активный пепсин. Он расщепляет белки до пептидов. Фермент химозин (ренин) переводит растворимый белок молока в нерастворимый казеин (створоженное молоко). Секретируемая желудочная липаза действует только на эмульгированные (в виде мельчайших капелек) жиры молока, расщепляя их до глицерина и жирных кислот.Выделяемая добавочными клетками слизь (муцин) выполняет роль барьера, предохраняя стенку желудка от механических повреждений, а также разрушающего воздействия соляной кислоты и переваривающего действия пепсина. Ферменты слюны в кислой среде желудка недеятельны.

В секреции желудочных желез выделяют две фазы; сложно-рефлекторную и желудочную. Первая фаза секреции является результатом действия комплекса условных и безусловных раздражителей, предшествующих попаданию пищи в желудок (вид и запах пищи, разговоры о ней). Выделяемый в этой фазе желудочный сок называют запольным, или аппетитным. Он подготавливает желудок к восприятию пищи. Вторая фаза— желудочная, или нейрогумораль-ная, — обусловлена раздражением пищей рецепторов слизистой оболочки желудка в результате механического и химического воздействия на них. Ведущую регуляторную роль в этой фазе играет гормон гастрин, вырабатываемый некоторыми клетками слизистой оболочки желудка. Он активирует секрецию желудочного сока и регулирует двигательную активность желудка и кишечника. Сильное возбуждающее действие на желудочную секрецию оказывают вещества, содержащиеся в отварах мясной и овощной пищи. Жиры тормозят сокоотделение, поэтому жирная пища переваривается значительно дольше (8—10 ч), чем другие ее виды (3—4 ч).

Большой вклад в методику изучения состава желудочного сока и механизмов регуляции желудочной секреции внесли работы русского ученого И. П. Павлова. Им был разработан новый подход к исследованию желудочной секреции, получивший названиеметода изолированного желудочка. Оперативным путем изолировалась часть желудка (туда пища не попадала) собаки с сохранением иннервации. В изолированный желудочек, сохранявший полноценность функций, вживлялась фистула, позволяющая собирать и анализировать чистый желудочный сок на любом этапе пищеварения. Этот метод позволил установить количество выделяемого желудочного сока и его состав в зависимости от химического состава органической части пищи, содержания в ней воды, минеральных веществ. Было показано, что желудочного сока с максимальным содержанием ферментов больше всего выделяется при потреблении белковой пищи, меньше — при углеводном питании и еще меньше — при употреблении жирной пищи. За большие заслуги в области физиологии пищеварения академику И. П. Павлову, первому из русских ученых, в 1904 г. была присуждена Нобелевская премия.

Из желудка пищевая кашица небольшими порциями поступает в тонкий кишечник, имеющий три отдела: двенадцатиперстную, тощую и подвздошную кишки общей длиной 5—7 м. Начальный и самый короткий отдел тонкого кишечника — двенадцатиперстная кишка длиной 25—30 см и диаметром 3— 5 см. В полость кишки, имеющей подковообразный вид, открываются протоки двух самых больших пищеварительных желез — печени и поджелудочной железы. Длина тощей кишки чуть меньше подвздошной.

Слизистая оболочка тонкой кишки имеет выпячивания —ворсинки высотой около 0,5—1,2 мм и количеством от 18 до 40 на 1 мм2(рис. 13.13). Поверхность ворсинки представлена каемчатым эпителием. Каемка этих клеток образована огромным количеством микроворсинок. За их счет резко увеличивается всасывающая поверхность кишечника. В полости каждой ворсинки расположен слепо оканчивающийся лимфатический сосудик, из которого лимфа оттекает в более крупный лимфатический сосуд. В каждую ворсинку входят 1 -2 артериолы, распадающиеся там на капиллярные сети. В соединительнотканной основе ворсинки имеются отдельные гладкомышечные волокна, благодаря которым ворсинка способна сокращаться.

В слизистой оболочке тонкого кишечника расположены многочисленные железы, вырабатывающие ежесуточно до 2 л кишечного сока — непрозрачной вязкой жидкости. В составе кишечного сока более 20 ферментов, расщепляющих молекулы белков, жиров и углеводов до низкомолекулярных соединений, способных всосаться, т. е. проникнуть из пищеварительного канала в кровь или лимфу.

Печень -— самая крупная железа человеческого организма массой до 2 кг. Она расположена в брюшной полости справа непосредственно под диафрагмой и состоит из четырех неравных долей. Ее верхняя сторона выпуклая, нижняя — слегка вогнутая. В центре нижней поверхности находятся ворота печени — место прохождения крупных кровеносных сосудов, нервов и желчных протоков. Там же располагается желчный пузырь — резервуар объемом 40—70 мл. Основу печени образуют многочисленные печеночные дольки. Железистый эпителий долек вырабатывает примерно 0,5—1,5 л желчи ежесуточно.

Желчь — густоватая жидкость золотисто-желтого цвета. В ее состав входят желчные кислоты и пигменты (главным образом продукты распада гемоглобина), холестерин, минеральные соли. Основные функции желчи следующие: перевод жировв в эмульгированное состояние, создание щелочной среды в тонком кишечнике, усиление активности всех пищеварительных ферментов и в особенности липазы, активирование процесса всасывания продуктов расщепления жира и витамина К, вырабатываемого бактериями толстого отдела кишечника, усиление перистальтических движений кишечника. Процесс образования желчи непрерывен, а желчевыведение в полость двенадцатиперстной кишки происходит периодически и связано в основном с приемом пищи. Часть желчи скапливается в желчном пузыре, откуда её запасы выделяются в кишечник при усиленном пищеварений. В случае закупорки желчного протока желчь в кишечник не выделяется и жиры не усваиваются человеком.

В изгибе двенадцатиперстной кишки располагается поджелудочная железа. Она имеет вытянутую форму и внутри разделена перегородками на ряд долек. В железе различают головку, тело и хвост. Вдоль железы проходит общий проток, по которому поджелудочный сок, имеющий щелочную реакцию, выделяется в полость двенадцатиперстной кишки. В соке содержится полный набор ферментов, способных расщепить все виды сложных питательных веществ (биополимеров) до мономеров. Один из ферментов — трипсин — заканчивает начатое еще в желудке расщепление белков до аминокислот. Трипсин выделяется в просвет кишки в форме неактивного трипсиногена, который после активации ферментом кишечного сока эптерокиназойпревращается в активный трипсин. Химотрипсин также расщепляет крупные фрагменты белков до аминокислот. Поджелудочнаялипаза расщепляет эмульгированные желчью жиры до конечных продуктов всасывания — глицерина и жирных кислот. Она наиболее активна в присутствии желчи. Поджелудочная амилаза осуществляет гидролиз сложных углеводов до дисахаридов, мальтаза — до моносахаридов. Ферменты поджелудочной железы сохраняют свою активность в щелочной среде при температуре тела человека,

Пищеварительные ферменты в тощей и подвздошной кишках вырабатываются железами слизистой оболочки. В кишечном соке содержатся энтерокиназа, активирующая протеазы поджелудочного сока, полипептидазы, под действием которых завершается расщепление белков до аминокислот, и амилолитические ферменты (сахараза, мальтаза, лактаза), расщепляющие в конечном итоге сложные углеводы до мономеров. Переваривание пищи в тонкой кишке завершается примерно за 4 часа.

Таким образом, в результате действия ферментов слюны, желудочного, поджелудочного и кишечного соков питательные вещества

Всасывание — совокупность процессов, обеспечивающих перенос веществ из просвета кишки в кровь и лимфу. Осуществляется этот процесс через эпителии кровеносных и лимфатических капилляров кишечных ворсинок слизистой оболочки. В лимфатический сосудик из содержимого тонкой кишки всасываются продукты расщепления жиров — глицерин и жирные кислоты. Растворимый в воде глицерин легко проникает через клеточные мембраны, а жирные кислоты образуют комплексы со щелочами и желчными кислотами и после омыления в растворимом состоянии всасываются через мембраны ворсинок. В клетках ворсинок из глицерина и жирных кислот синтезируются жиры, свойственные человеку. Они затем поступают в лимфатический сосудик ворсинки. Лимфа, оттекающая от кишечника, имеет желтый цвет, так как насыщена мельчайшими капельками жира. Через грудной лимфатический проток жиры попадают в обший кровоток и вступают в обменные процессы.

Аминокислоты и моносахариды всасываются в кровеносные капилляры ворсинок. Током крови аминокислоты доставляются клеткам организма, в которых из них синтезируются белки. Часть моносахаридов используется на нужды клеток, а другая их часть поступает в печень, где запасается в виде животного крахмала — гликогена. Ворсинки, сокращаясь, способствуют контакту поверхности слизистой оболочки тонкой кишки с пищевой кашицей (химусом), а также оттоку крови и лимфы, насыщенных питательными веществами.

Из тонкого кишечника химус поступает в толстую кишку. Ее длина примерно 1,5—2 м и диаметр 4—8 см. Слизистая оболочка кишки образует складки полулунной формы, ворсинки отсутствуют. Начальный отдел толстого кишечника — мешковидная слепая кишка с небольшим червеобразным отростком —аппендиксом. При воспалении этого отростка (аппендиците) может создаться угроза для жизни человека. За слепой кишкой следуют ободочная, сигмовидная и прямая кишки. Заканчивается прямая кишка анальным отверстием.

Через слизистую оболочку толстой кишки интенсивно всасывается вода, минеральные соли. Специализированные микроорганизмы кишечника расщепляют целлюлозную клеточную стенку растительной пищи, а также остатки непереваренных белков. В результате гнилостного распада белков образуются ядовитые вещества, которые всасываются через слизистую оболочку толстой кишки в кровь. Кровь, оттекающая от кишечника, по воротной вене поступает в печень, где ядовитые вещества обезвреживаются. Эта функция печени называется барьерной, или защитной. Микроорганизмы кишечника синтезируют витамины К и группы В, подавляют деятельность патогенных бактерий. Образующиеся каловые массы периодически выводятся из организма.

· Полостное (внутрикишечное) пищеварение характерно для многоклеточных животных, имеющих желудочно-кишечный тракт, и происходит в полости последнего.

· Внекишечное пищеварение характерно для некоторых животных, которые обладают кишечником, но вводят пищеварительные ферменты в тело добычи, всасывая затем полупереваренную пищу (наиболее известные из таких животных — пауки и личинки жуков-плавунцов).

· Выделительная, или экскреторная система в биологии — совокупность органов, выводящих из организма избыток воды, продукты обмена веществ, соли, а также ядовитыевещества, попавшие в организм извне или образовавшиеся в нём.

· У протистов легкорастворимые экскреты выводятся в окружающую среду путём диффузии или с помощью сократительных вакуолей, выполняющих функцию осморегуляции. Отделение от цитоплазмы выделяемой жидкости происходит в спонгиоме — сложной системе мембранных пузырьков или каналов.

· У ряда низших многоклеточных продукты обмена диффундируют через поверхность тела и стенки полостей, связанных с окружающей средой. Кроме того, в клетках пресноводных губок и гидр присутствуют вакуоли, которые участвуют в накоплении и выведении экскретов.

· У большинства многоклеточных есть специальные органы выделения — протонефридии, метанефридии, целомодукты, нефромиксии, почки, — которые обеспечивают выведение из организма вредных продуктов обмена веществ.

· К органам выделения относят также т. н. «почки накопления» — клетки или ткани, которые накапливают вредные вещества, обычно переводя их в нерастворимую форму.

· В функции выделения могут участвовать также отдельные клетки (например, фагоциты), которые способны покидать организм, и органы других систем (легкие, кожа и т. п.).

· Экскреторная (выделительная)

· Осморегулирующая

· Ионорегулирующая

· Эндокринная (внутрисекреторная)

· Метаболическая

· Участие в кроветворении

Основная функция почек — выделительная — достигается процессами фильтрации и секреции. В почечном тельце из капиллярного клубочка под высоким давлением содержимое крови вместе с плазмой (кроме клеток крови и некоторых белков) процеживается в капсулу Шумлянского-Боумэна. Образовавшаяся жидкость - первичная моча продолжает свой путь по извитым канальцам нефрона, в которых происходит обратное всасывание питательных веществ (таких как глюкоза, вода, электролиты и др.) в кровь, при этом в первичной моче остаются мочевина, мочевая кислота и креатин. В результате этого образуется вторичная моча, которая из извитых канальцев идет в почечную лоханку, затем в мочеточник и мочевой пузырь. В норме за день через почки проходит 1700-2000 литров крови, образуется 120-150 литров первичной мочи и 1.5-2 литра вторичной мочи.

Скорость ультрафильтрации определяется несколькими факторами:

· Разницей давлений в приносящей и отводящей артериоле почечного клубочка.

· Разницей онкотического давления между кровью в капиллярной сети клубочка и просветом боуменовой капсулы.

· Свойствами базальной мембраны почечного клубочка.

Вода и электролиты свободно проходят через базальную мембрану, тогда как вещества с более высокой молекулярной массой фильтруются избирательно. Определяющим фактором для фильтрации средне- и высокомолекулярных веществ является размер пор и заряд базальной мембраны клубочка.

Почки играют существенную роль в системе поддержания кислотно-щелочного равновесия плазмы крови. Почки также обеспечивают постоянство концентрации осмотически активных веществ в крови при различном водном режиме для поддержания водно-солевого равновесия.

Через почки из организма выводятся конечные продукты азотистого обмена, чужеродные и токсические соединения (включая многие лекарства), избыток органических и неорганических веществ, они участвуют в обмене углеводов и белков, в образовании биологически активных веществ (в частности — ренина, играющего ключевую роль в регуляции системного артериального давления и скорость секреции альдостерона надпочечниками, эритропоэтина — регулирующего скорость образования эритроцитов).

Почки водных животных в значительной степени отличаются от почек наземных форм в связи с тем, что у водных стоит проблема выведения из организма воды, в то время как наземным необходимо удерживать воду в организме.

6. Центральная нервная система (ЦНС) — основная часть нервной системы животных (в том числе человека), состоящая из нейронов и их отростков; у беспозвоночных представлена системой тесно связанных между собой нервных узлов (ганглиев), у позвоночных животных (включая людей) — спинным и головным мозгом.

Главная и специфическая функция ЦНС — осуществление простых и сложных высокодифференцированных отражательных реакций, получивших название рефлексов. У высших животных и человека низшие и средние отделы ЦНС — спинной мозг, продолговатый мозг, средний мозг,промежуточный мозг и мозжечок — регулируют деятельность отдельных органов и систем высокоразвитого организма, осуществляют связь и взаимодействие между ними, обеспечивают единство организма и целостность его деятельности. Высший отдел ЦНС — кора больших полушарийголовного мозга и ближайшие подкорковые образования — в основном регулирует связь и взаимоотношения организма как единого целого с окружающей средой.

Характерные особенности:

1) является более поздним продуктом эволюции;

2) обеспечивает быструю регуляцию;

3) имеет точного адресата воздействия;

4) осуществляет экономичный способ регуляции;

5) обеспечивает высокую надежность передачи информации.

В организме нервный и гуморальный механизмы работают как единая система нейрогуморального управления. Это комбинированная форма, где одновременно используются два механизма управления, они взаимосвязаны и взаимообусловлены.

Нервная система представляет собой совокупность нервных клеток, или нейронов.

По локализации различают:

1) центральный отдел – головной и спинной мозг;

2) периферический – отростки нервных клеток головного и спинного мозга.

По функциональным особенностям различают:

1) соматический отдел, регулирующий двигательную активность;

2) вегетативный, регулирующий деятельность внутренних органов, желез внутренней секреции, сосудов, трофическую иннервацию мышц и самой ЦНС.

Функции нервной системы:

1) интегративно-коордиационная функция. Обеспечивает функции различных органов и физиологических систем, согласует их деятельность между собой;

2) обеспечение тесных связей организма человека с окружающей средой на биологическом и социальном уровнях;

3) регуляция уровня обменных процессов в различных органах и тканях, а также в самой себе;

4) обеспечение психической деятельности высшимие отделами ЦНС.

Рефлекс - это приспособительная реакция организма, обеспечивающая тонкое, точное и совершенное уравновешивание организма с состоянием внешней или внутренней среды. "Если отключить все рецепторы, то человек должен заснуть мертвым сном и никогда не проснуться" (И.М. Сеченов). Т.о. нервная система работает по принципу отражения: стимул - ответная реакция. Авторами рефлекторной теории являются выдающиеся отечественные физиологи И.П. Павлов и И.М. Сеченов. Для осуществления любого рефлекса необходимо особое анатомическое образование - рефлекторная дуга. Рефлекторная дуга - это цепь нейронов, по которым проходит нервный импульс от рецептора (воспринимающей части) до органа, отвечающего на раздражение. Рефлекторная дуга состоит из 5 звеньев:

1. рецептор, воспринимающий внешние или внутренние воздействия; рецепторы преобразуют воздействующую энергию в энергию нервного импульса; рецепторы обладают очень высокой чувствительностью и специфичностью (определенные рецепторы воспринимают только определенный вид энергии)

2. чувствительный (центростремительный, афферентный) нейрон, образованный чувствительным нейроном, по которому нервный импульс поступает в ЦНС

3. вставочный нейрон, лежащий в ЦНС, по которому нервный импульс переключается на двигательный нейрон

4. двигательный нейрон (центробежный, эфферентный), по которому нервный импульс проводится к рабочему органу, отвечающему на раздражение

5. нервные окончания - эффекторы, передающие нервный импульс на рабочий орган (мышцу, железу др.)







Date: 2016-11-17; view: 1205; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.039 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию