Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Закон Ома для участка цепи: сила тока прямо пропорциональна





напряжению и обратно пропорциональна сопротивлению:

 

При нагревании удельное электрическое сопротивление проводника увеличивается), где ро – удельное электрическое сопротивление при температуре t, ро нулевое при температуре 0, альфа –

Билет № 9

Сила трения. Коэффициент трения температурный коэффициент сопротивления. С приближением температуры к абсолютному нулю удельное сопротивление монокристаллов становится очень маленьким.

R=роl/s, где ро – удельное сопративлени5е проводника (Ом*м).

Явление уменьшения удельного сопротивления до нуля при температуре, отличной от нуля, называется сверхпроводимостью. Прохождение тока в сверхпроводнике происходит без потерь энергии, поэтому однажды возбужденный в сверхпроводящем кольце электрический ток может существовать неограниченно долго без изменений.

 

  1. скольжения. Учет и использования трения в быту и технике.

 

Сила, возникающая на границе взаимодействия тел при отсутствии относительного движения тел, называется силой трения покоя. Сила трения покоя равна по модулю внешней силе, направленной по касательной к поверхности соприкосновения тел и противоположна ей по направлению. При равномерном движении одного тела по поверхности другого под воздействием внешней силы на тело действует сила, равная по модулю движущей силе и противоположная по направлению. Эта сила называется силой трения скольжения. Вектор силы трения скольжения направлен против вектора скорости, поэтому эта сила всегда приводит к уменьшению относительной скорости тела. Силы трения также, как и сила упругости, имеют электромагнитную природу, и возникают за счет взаимодействия между электрическими зарядами атомов соприкасающихся тел. Экспериментально установлено, что максимальное значение модуля силы трения покоя пропорционально силе давления. Также примерно равны максимальное значение силы трения покоя и сила трения скольжения, как примерно равны и коэффициенты пропорциональности между силами трения и давлением тела на поверхность. Сила трения – механическая сила, в земных условиях трение и сила трения всегда сопутствуют любому движению тел. Сила трения возникает при непосредственном соприкосновении тел и всегда направлена вдоль поверхности соприкосновения.

Трение покоя. Сила трения покоя равна по модулю и направлена противоположно силе, приложенной к покоящемуся телу параллельно поверхности соприкосновения его с другим телом. Сила трения покоя мешает сдвинуть с места тяжёлый предмет. Максимальная сила трения покоя пропорциональна силе нормального давления. Сила трения покоя не только мешает телу начать двигаться, но и служит причиной начала движения.

Трение скольжения. На движущееся тело действует сила трения скольжения (по модулю почти равна максимальной сие трения покоя), направлена всегда в сторону, противоположную направлению движения (напр – ию вектора скорости) тела относительно того тела, с которым оно соприкасается. Значит ускорение, сообщаемое силой трения телу, направлено против движения тела. Сила трения скольжения пропорциональна силе давления. Коэффициент трения характеризует не тело, на которое действует сила трения, а сразу на два соприкасающихся тела. Значение коэффициента зависит от материала, обработки поверхности тела, относительной скорости (при изменении направления скорости изменяется и направление силы трения) …не зависит от площади, и относительного положения тел. Трение между твердыми телами – сухое трение.

Жидкое трение. Сила жидкого трения много меньше силы сухого трения. В жидкости и газе нет силы трения покоя (даже самая малая сила, приложенная к телу в жидкости или газе, сообщает ему ускорение. Сила жидкого трения зависти от направления движения, значения скорости (при небольших скоростях она пропорциональна скорости тела, а при больших – квадрату скорости). Сила сопротивления зависит от формы тела. Форма тела, при которой сопротивление мало называют обтекаемой формой.

 

  1. Переменный ток как вынужденные электромагнитные колебания. Действующее значение силы переменного тока и напряжения. Активное и реактивное сопротивление. Закон Ома для электрической цепи переменного тока.

 

Устройства, полностью преобразующие электрическую энергию в другие виды энергии, называют активной нагрузкой, а их сопротивление – активным сопротивлением. Предположим, что напряжение на концах цепи меняется по гармоническому закону u=Umcos wt. Как и в случае постоянного тока, мгновенное значение силы тока пропорционально мгновенному значению напряжения. Поэтому применяется закон Ома для участка цепи: i=U/R=Umcos wt/R = Im cos wt. На активном сопротивлении колебания силы тока совпадают по фазе с колебаниями напряжения. Сила тока в любой момент времени пропорциональна ЭДС источника тока (закон Ома для полной цепи). Если ЭДС источника не изменяется со временем и остаются неизменными параметры цепи, то через некоторое время после замыкания цепи изменения силы тока прекращаются, в цепи течет постоянный ток., но в технике широко применяются различные генераторы электрического тока, в которых ЭДС периодически изменяется. При подключении в электрическую цепь генератора переменной ЭДС в цепи возникают вынужденные электромагнитные колебания. Вынужденными электромагнитными колебаниями называют периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника. Электромагнитные колебания в электрических цепях создаются генератором переменного тока, работающим на электростанции. (Ф = BScosα = BScosωt; e = BSωsinωt – изменения ЭДС индукции со временем происходит по этому закону или e = εmsinωt, где εm = BSω амилитуда ЭДС). Если с помощью контактных колец и скользящих по ним щеток соединить концы витка с электрической цепью, то под действием ЭДС индукции, изменяющейся со временем по гармоническому закону, в электрической цепи возникнут вынужденные электрические колебания силы тока – переменный ток. На практике синусоидальная ЭДС возбуждается не путем вращения витка в магнитном поле, а путем вращения магнита или электромагнита(ротора) внутри статора – неподвижной обмотки, навитой на стальной сердечник. Это позволяет избежать снятия напряжения с помощью контактных колец, что невозможно при больших значениях амплитуды напряжения. U = Umcosωt; i = Imcosωt; Im = Um/R; p = iu = ImUmcos2ωt так как среднее значение квадрата косинуса за период равно 0,5, то среднее значение мощности равно: P = ImUm/2 = I2mR/2 Из равенства мощностей получим I2R = I2mR/2; I2 = I2m/2. Действующим значением силы тока называют величину, в √2 раз меньшую ее амплитудного значения: I = Im/√2. Действующее значение силы тока равно силе такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока. Децствующее значение переменного напряжения в √2 раз меньше его амплитудного: U = Um/√2. Средняя мощность переменного тока при совпадении фаз колебаний силы тока и напряжения равна произведению действующих значений силы тока и напряжения: P = IU. P = I2R; R = P/I2(активное сопротивление). Um = ImLω; Xl = Um/Im = Lω Im = UmωC; Xc = Um/Im = 1/ωC.


 

Билет № 10

  1. Равновесие твердого тела. Момент силы. Условия равновесия твердого тела. Виды равновесия. Принцип минимума потенциальной энергии.

 

Второй закон Ньютона устанавливает связь между кинематической характеристикой движения – ускорением, и динамическими характеристиками взаимодействия – силами. , или, в более точном виде, , т.е. скорость изменения импульса материальной точки равна действующей на него силе. При одновременном действии на одно тело нескольких сил тело движется с ускорением, являющимся векторной суммой ускорений, которые возникли бы при воздействии каждой из этих сил в отдельности. Действующие на тело силы, приложенные к одной точке, складываются по правилу сложения векторов. Это положение называют принципом независимости действия сил. Центром масс называется такая точка твердого тела или системы твердых тел, которая движется так же, как и материальная точка массой, равной сумме масс всей системы в целом, на которую действуют та же результирующая сила, что и на тело. . Центр тяжести – точка приложения равнодействующей всех сил тяжести, действующих на частицы этого тела при любом положении в пространстве. Если линейные размеры тела малы по сравнению с размером Земли, то центр масс совпадает с центром тяжести. Сумма моментов всех сил элементарных тяжести относительно любой оси, проходящей через центр тяжести, равна нулю.


-плечо силы- кратчайшее расст-ние от точки оси вращения до линии действия силы. F<0, т.к. F, вызывает вращение против часовой стрелки. Так же F2>0,

т.к поворот по часовой стрелке.

Условие равновесия тел (№2), имеющих ось вращения:суммы моментов сил = 0

А если тело не имеет оси вращения, то условие равновесия: сема сил, приложенных к телу=0

 

Равновесие – это либо состояние покоя, либо равномерное движение.

Принцип минимума потенциальной энергии. Одномерное движение частицы вдоль оси 0х может быть ограничено следующим образом. В области

частица движется свободно. За пределы области 0L она выйти не может. На границах области 0L, в точках х=0 и х=L, потенциальная энергия П частицы становится равной бесконечности. Такое движение частицы наз-ся движением в прямоугольной одномерной потенциальной яме.

 

  1. Трансформатор. Устройство и принцип действия трансформатора. Передача электроэнергии.

 

Аппараты, преобразующие переменный ток одного напряжения в другое – называются электрическими трансформаторами. Состоит из нескольких катушек изолированного провода, размещенных на магнитопроводе из тонких пластин специально электротехнической стали. Переменный ток, текущий по одной из обмоток (первичной). Создает вокруг нее и в магнитопроводе переменной магнитное поле, пересекающее витки другой (вторичной), возбуждает в ней переменную электродвижущую силу. Если обе обмотки имеют равное количество витков, то в ней наведется такое же напряжение, какое в первичной. Если не равное количество, то трансформатор может быть повышающим (во вторичной обмотке больше витков), понижающим – наоборот. Действие основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Сердечник из трансформаторной стали концентрирует магнитное поле, так что магнитный поток практически существует только внутри сердечника и одинаков во всех его сечениях.


U1/U2 = I2/I1, U1/U2 = E1/E2 = n1/n2 = К, где К – коэффициент трансформации, при к>0 –понижающий…. Пир разомкнутой вторичной обмотки трансформатор с малым активным сопротивлением первичной обмотки почти не потребляет энергию из сети, так как велико индуктивное сопротивление ненагруженной обмотки трансформатора. Если к концам вторичной обмотки присоединить цепь, то сила тока во вторичной обмотке уже не будет равна 0. Появившийся ток создает в сердечнике свой переменный магнитный поток, который по правилу Ленца должен уменьшить изменения магнитного потока в сердечнике. Но уменьшение амплитуды потока должно уменьшить ЭДС. Однако это невозможно, так как модули U1=e1. Поэтому при замыкании цепи вторичной обмотки автоматически увеличивается сила тока в первичной. Увеличение силы тока в первичной цепи (по закону сохранения энергии) увеличит силу тока во вторичной.

Трансформаторы находят широкое применение в промышленности и быту. Силовые электрические трансформаторы дают возможность передавать переменный током линиям электропередачи на большие расстояния с малыми потерями энергии. Для этого напряжение переменного тока, вырабатываемого генераторами электростанции, с помощью трансформаторов повышают до нескольких сотен тысяч вольт и посылают по ЛЭП. В месте потребления напряжение понижают трансформаторами. 1-оеУсловие равновесияМ- момент силы – физич. величина, харак-ующая степень вращения тела. Численно = произвед. силы на плечо.

 

Билет № 11

  1. Механическая работа и мощность. Энергия. Закон сохранения энергии в механических процессах.

 

Элементарной работой силы на элементарном перемещении материальной точки называется скалярная физическая величина. Значение элементарной работы силы зависит от выбора системы отсчета. Единица работы – Дж. Потенциальными называются силы, работа которых зависит от начального и конечного положения движущейся материальной точки или тела и не зависит от формы траектории. При замкнутой траектории работа потенциальной силы всегда равна 0. К потенциальным силам относятся силы тяготения, силы упругости и электрические силы. Быстроту выполнения работы в технике характеризуют мощностью. Она показыввает, какая работа совершается телом в еденицу времени. Это скорость совершения работы N=A/t. Измеряется в ваттах (за 1 с выполняется работы в 1 Дж).

Закон сохранения механической энергии: механическая энергия системы, в которой действуют потенциальные силы, сохраняется постоянной в процессе движения системы.

E1+E2=E1’+Е2’

 

  1. Принцип радиосвязи. Изобретение радио. Радиолокация. Телевидение. Развитие средств связи.

 

Важнейшим этапом в развитии радиосвязи было создание в 1913 году генератора незатухающих электромагнитных колебаний). Кроме передачи телеграфных сигналов, состоящих из коротких и более продолжительных импульсов электромагнитных волн, стала возможна надежная и высококачественная радиотелефонная связь – передача речи или музыки с помощью электромагнитных волн. Принцип радиосвязи заключается в следующем. Переменный электрический ток высокой частоты, созданный в передающей антенне, вызывает в окружающем пространстве быстро меняющееся электрическое поле, которое распространяется в виде электромагнитной волны. Достигая приемной антенны, электромагнитная волна вызывает в ней переменный ток той же частоты, на которой работает передатчик.

При радиотелефонной связи колебания давления воздуха в звуковой волне с помощью микрофона превращаются в электрические колебания той же формы. Колебания звуковой частоты представляют собой сравнительно медленные колебания, а электромагнитные волны низкой (звуковой) частоты почти совсем не излучаются.

Обнаружить радиоволны и извлечь из них передаваемую информацию можно с помощью радиоприемника.

Достигая антенны приемника, радиоволны пересекают ее провод и возбуждают (индуцируют) в ней очень слабые радиочастоты. В приемной антенне одновременно находятся высокочастотные колебания от многих радиопередатчиков. Поэтому один из важнейших элементов радиоприемника – селективное (избирательное) устройство, которое из всех принятых сигналов может отобрать нужные. Таким устройством является колебательный контур, позволяющий настраивать приемник на радиоволны определенной длины.

Колебания тока в контуре будут наиболее сильными, если частота колебаний подведенного сигнала совпадает с частотой колебаний контура. Назначение других элементов радиоприемника заключается в том, что бы усилить принятые или отраженные колебательным контуром высокочастотные модулированные колебания, выделить из них колебания звуковой частоты, уменьшить их и преобразовать в сигналы информации. Первую из этих функций выполняет усилитель колебаний радиочастоты, вторую – детектор, третью – усилитель колебаний звуковой частоты, четвертую – динамическая головка громкоговорителя или приемный телеграфный аппарат. В гидроаэростатике рассматриваются условия и закономерности равновесия жидкостей и газов под воздействием приложенных к ним сил и, кроме того, условия равновесия твердых тел, находящихся в жидкостях или газах.

В отличие от твердых тел, жидкости и газы не сохраняют своей формы, а принимают форму того сосуда, в который заключены. Отличительной способностью жидкостей и газов является их текучесть, которая связана с малыми силами трения при относительном движении соприкасающихся слоев.

2) Радиолокацией наз-ся обнаружение и определение местонахождения различных объектов с помощью радиоволн. Радиок основана на явлении отражения и рассеяния радиоволн телами. В радиолокационной астрономии методы радиолокации используются для уточнения движения планет Солнечной системы и их спутников.

Телевидиние. С помощью радиоволн осуществляется передача на расстояние звук. сигалов и изображений предметов.

В телевизионном приемнике –телевизоре –имеется электронно- лучевая трубка с магнитным управлением, называемая кинескопом. В кинескопе электрон пушка создает электронный пучок, который фокусируется на экране, покрытом кристаллами, способными светиться под ударами быстро движущихся электронов, -люминофорами. На пути к экрану электроны пролетаяют через магнитные поля двух пар катушек, расположенных снаружи трубки. О развитие средств связи сам наговоришь –нет нигде.(ну там про оптоволокно…)

 

Билет № 12

 

  1. Гидро- и аэростатика. Общие свойства жидких и газообразных тел. Закон Паскаля. Сила Архимеда. Условия плавания тел.

 

Физическая величина, равная отношению модуля силы, действующей перпендикулярно поверхности к площади это поверхности, называется давлением. Единица давления – паскаль, равный давлению, производимому силой в 1 ньютон на площадь в 1 квадратный метр. Все жидкости и газы передают производимое на них давление во все стороны. В цилиндрическом сосуде сила давления на дно сосуда равна весу столба жидкости. Давление на дно сосуда равно , откуда давление на глубине h равно . На стенки сосуда действует такое же давление. Равенство давлений жидкости на одной и той же высоте приводит к тому, что в сообщающихся сосудах любой формы свободные поверхности покоящейся однородной жидкости находятся на одном уровне (в случае пренебрежимо малости капиллярных сил). В случае неоднородной жидкости высота столба более плотной жидкости будет меньше высоты менее плотной.

Зависимость давления в жидкости и газе от глубины приводит к возникновению выталкивающей силы, действующей на любое тело, погруженное в жидкость или газ. Эту силу называют архимедовой силой. Если в жидкость погрузить тело, то давления на боковые стенки сосуда уравновешиваются друг другом, а равнодействующая давлений снизу и сверху является архимедовой силой.

т.е. силы, выталкивающая погруженное в жидкость (газ) тело, равна весу жидкости (газа), вытесненной телом. Архимедова сила направлена противоположно силе тяжести, поэтому при взвешивании в жидкости вес тела меньше, чем в вакууме. На тело, находящееся в жидкости, действует сила тяжести и архимедова сила. Если сила тяжести помодулю больше – тело тонет, меньше – всплывает, равны – может находиться в равновесии на любой глубине. Эти отношения сил равны отношениям плотностей тела и жидкости (газа

 

  1. Электромагнитная природа света. Методы измерения скорости света. Шкала электромагнитных волн.

 

Метод измерения скорости света, заключающийся в последовательном отражении пучка света от быстро вращающегося зеркала, затем от второго - неподвижного зеркала, расположенного на точно измеренном расстоянии, и затем вновь от первого зеркала, успевшего повернуться на некоторый малый угол. Скорость света определяют (при известных скорости вращения первого зеркала и расстоянии между двумя зеркалами) по изменению направления трижды отражённого светового луча

 

Шкала электромагнитных волн

Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и да гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое.
Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Билет № 13

  1. Механические волны и их свойства. Распространение колебаний в упругих средах. Длина волны. Звуковые волны и их свойства. Эхо. Акустический резонанс.

 

Мир наполнен самыми разнообразными звуками: тиканьем часов и гулом моторов, шелестом листов и завыванием ветра, пением птиц и голосами людей. О том, как рождаются звуки и что они собой представляют, люди начали догадываться очень давно. Достигая уха, звук воздействует на барабанные перепонки и вызывает ощущение звука. На слух человек воспринимает упругие волны, имеющие частоту в переделах от 16 Гц до 20 кГц (1 Гц – одно колебание в секунду). Вот почему упругие волны в любой среде, частоты которых лежат в указанных пределах, называют звуковыми волнами или просто звуком. В воздухе при температуре 0 и нормальном атмосферном давлении звук распространяется со скоростью 330 м/с, а в морской воде – около 1500 м/с, а в некоторых металлах его скорость достигает 700 м/с. Упругие волны с частотой меньше 16 Гц называют инфразвуком, а с частотой превышающей 20 кГц – ультразвуком. Звук может распространяться в виде продольных и поперечных волн. В газообразном состоянии возникают только продольные волны, когда колебательное движение частиц происходит лишь в том направлении, в котором распространяется волна. В твердых тела помимо продольных возникает и поперечные, когда частицы среды колеблются в направлении, перпендикулярных направлению волны. Звуковые волны несут с собой энергию, которую сообщают им источник звука. Величину кинетической энергии, протекающей за оду секунду через квадратный сантиметр поверхности, перпендикулярной направлению распространения волны, вычислил Николай Алексеевич Наумов. Эту величину назвали потоком энергии. Она выражает меру интенсивности, или, как еще говорят, силы звука. Всякий реальный звук – это непросто гармоническое колебание, а своеобразная смесь многих гармонических колебаний с определенным набором частот. Музыкальный звук характеризуется тремя качествами: высотой (определяюще2йся чистом колебаний в секунду – частотой), громкостью (зависящей от интенсивности колебаний) и тембром – окраской звука (зависящей от формы колебаний). Из –за конечной скорости звука появляется эхо. Чтобы его услышать, можно произнести громкий звук перед крупным зданием, отстоящим от вас на 20 –30 метров. Распространяющаяся звуковая волна, встретив на своем пути большую преграду – стену здания, отражается от нее. Когда отраженная волна достигает нашего уха, мы слышим отголосок или эхо. Эхо – это звуковая волна, отраженная какой – либо преградой и возвратившаяся в то место, откуда она начала распространяться. Легко понять, что мы слышим эхо через такой промежуток времени. В течении которого звуковая волна проходит путь до преграды и обратно, те проходит двойное расстояние между источником звука и преградой. S=V*t/2. Излучая короткие импульсы волн и улавливая их эхо, измеряют время движения волны от преграды и обратно, а потом определит расстояние до преграды. В этом суть эхолокации. Волна – распространение колебаний в пространстве … от точки к точке от частицы к частице. Скорость распространения волны – скорость волны, которая равна произведению частоты колебаний в волне на длину волны. Волна, в которой колебания происходят вдоль той же прямой, что и их распространение, называют продольной волной. Волна, распространяющаяся в направлении, перпендикулярном направлению колебаний частиц в волне, называется поперечной.

Энергия пропорциональна квадрату амплитуды колебаний. Звуковые колебания, переносимые звуковой волной, могут служить вынуждающей, периодически изменяющейся силой для колебательных систем и вызвать в этих системах явление резонанса(это акустический резонанс).

Для звучания – резонаторы.

 

  1. Интерференция света. Когерентные волны. Цвета тонких пленок и применение интерференции.

 

Интерференцией света называют пространственное перераспределение светового потока при на­ложении двух (или нескольких) когерентных свето­вых волн (Когерентные волны — это волны, одинаковые по частоте и фазе колебания.), в результате чего в одних местах возника­ют максимумы, а в других минимумы интенсивности (интерференционная картина). Интерференцией света объясняется окраска мыльных пузырей и тонких масляных пленок на воде, хотя мыльный раствор и масло бесцветны. Световые волны частично отража­ются от поверхности тонкой пленки, частично прохо­дят в нее. На второй границе пленки вновь происхо­дит частичное отражение волны (рис. 34). Световые волны, отраженные двумя поверхностями тонкой пленки, распространяются в одном направлении, но проходят разные пути. При разности хода I, кратной целому числу длин волн l = 2k λ/2.

При разности хода, кратной нечетному числу полуволн l = (2k + 1) λ/2, наблюдается интерферен­ционный минимум. Когда выполняется условие мак­симума для одной длины световой волны, то оно не выполняется для других волн. Поэтому освещенная белым светом тонкая цветная прозрачная пленка кажется окрашенной. Явление интерференции в тон­ких пленках применяется для контроля качества об­работки поверхностей просветления оптики. При прохождении света через малое круглое отверстие на экране вокруг центрального светлого пятна наблюдаются чередующиеся темные и светлые кольца; если свет проходит через узкую щель, то по­лучается картина из чередующихся светлых и тем­ных полос.

Интерференцию света удалось наблюдать с помощью установки, предложенной Юнгом. Он был одним из первых, кто понял, что от двух независимых источников света интерференционная картина не получится. Поэтому он пропустил в тёмную комнату солнечный свет через узкое отверстие, затем с помощью двух других отверстий разделил этот пучок на два. Эти два пучка, накладываясь друг на друга, образовали в центре экрана белую полосу, а по краям – радужные. Таким образом, в опыте Юнга интерференционная картина получилась путем деления фронта волны, исходящей из одного источника, при ее прохождении через два близко расположенных отверстия.

 

Билет № 14

 

  1. Основные положения молекулярно – кинетической теории и их опытные обоснования. Размеры и массы молекулы.

 

Можно выделить три основных положения молекулярно-кинетической теории, которая объясняет свойства тел, состоящих из огромного числа молекул, а также особенности тепловых процессов, в них протекающих:

1. вещество состоит из отдельных мельчайших частиц, называемых молекулами; молекула – это наименьшая электрически нейтральная частица вещества, обладающая всеми его химическими свойствами и могущая существовать самостоятельно;

2. молекулы находятся в беспристрастном, хаотическом движении;

3. молекулы взаимодействуют друг с другом.

Реальное существование молекул подтверждает огромное количество экспериментальных фактов. Так, всем известно, что твердое вещество можно раздробить либо растворить в воде или других растворителях. Мы знаем что газы могут расширятся или сжиматься. Броуновское движение или диффузия свидетельствуют о том. Что между молекулами одного и того же вещества есть промежутки.

Молекулы в веществе взаимодействуют друг с другом: наличие сил притяжения подтверждает тот факт, что тела сами по себе не распадаются на молекулы, а для разрыва, например, твердого тела требуется усилие. О наличии сил притяжения можно судить по тому, что две близко расположенные капли жидкости слипаются.

Твердые тела и жидкости практически несжимаемы. Само же существование твердых те и жидкостей свидетельствует о том, что силы отталкивания убывают с увеличением расстояния быстрее, чем силы притяжения. Если бы последние убывали быстрее сил отталкивания, то в природе просто не было бы больших устойчивых совокупностей молекул, так как молекулы разлетелись бы под действием под действием сил отталкивания.

Молекула – это наименьшая частица вещества, обладающая всеми его химическими свойствами. Молекула способна с самостоятельному существованию. Она может состоять из одинаковых атомов и различных. Сущность молекулы можно описать и с другой точки зрения: молекула -–это устойчивая система, состоящая из атомных ядер и окружающих электронов, причем химические свойства молекул определяются электронами внешних оболочек в атомах. Атомы объединяются в молекулы в большинстве случаев химическими связями. Обычно такая связь создается одной, двумя или тремя парами электронов, которыми владеют сообща два атома. Молекулы характеризуются определенным размером и формой. Если известны молекулярный вес и плотность данного вещества. То вычислить размер его молекул несложно. Для этого надо объем, занимаемый грамм – молекулой вещества, разделить на число Авогадро (6,02*10^23 1/моль). Зная диаметр молекулы и плотность вещества можно определить массу молекулы m=p*V

 

  1. Дисперсия и поглощение света. Спектроскоп и спектрограф.

 

 

Дисперсия света. Явление зависимости показателя преломления вещества от частоты света называется дисперсией света. Установлено, что с возрастанием частоты света показатель преломления вещества увеличивается. Пусть на трёхгранную призму па­дает узкий параллельный пучок белого света на котором показано сечение призмы плоскость­ю чертежа и одни из лучей). При прохождении через призму он разлагается на пучки света разного цвета от фиолетового до красного. Цвет­ную полосу на экране называют сплошным спек­тром. Нагретые тела излучают световые волны со всевозможными частотами, лежащими в интерва­ле частот от до Гц. При разложении этого света и наблю­дается сплошной спектр. Возникновение сплошного спектра объясняется дисперсией света. Наибольшее значение показатель преломления имеет для фиолетового света, наименьшее — для красного. Это приводит к тому, что сильнее всего будет преломляться фиолетовый свет и слабее всего —красный. Разложение сложного света при прохождении че­рез призму используется в спектрометрах. Поглощение света. Явление поглощения света объясняет классическая электронная теория. Объяснение состоит в следующем. Электроны атомов и молекул совершают вынужденные колебания под действием электрического поля с частотой, равной частоте света. Если частота световой волны приближается к частоте собственных колебаний, то возникает явление резонанса, обуславливающее поглощение света. Поглощенная энергия может переходить в другие виды, в частности, она может превращаться в энергию хаотического, теплового движения частиц вещества.

 

Билет № 15

  1. Идеальный газ. Температура как мера средней кинетической энергии молекул.

Для объяснения свойств вещества в газообраз­ном состоянии используется модель идеального газа. Идеальным принято считать газ, если:

а) между мо­лекулами отсутствуют силы притяжения, т. е. моле­кулы ведут себя как абсолютно упругие тела;

б) газ очень разряжен, т. е. расстояние между молекулами намного больше размеров самих молекул;

в) тепловое равновесие по всему объему достигается мгновенно. Условия, необходимые для того, чтобы реальный газ обрел свойства идеального, осуществляются при со­ответствующем разряжении реального газа. Некото­рые газы даже при комнатной температуре и атмо­сферном давлении слабо отличаются от идеальных.

Основными параметрами идеального газа являются давление, объем и температура.

 

Одним из первых и важных успехов МКТ было качественное и количественное объяснение давления газа на стенки сосуда. Качественное объяснение за­ключается в том, что молекулы газа при столкнове­ниях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела и передают свои импульсы стенкам сосуда.

На основании использования основных поло­жений молекулярно-кинетической теории было по­лучено основное уравнение МКТ идеального газа, ко­торое выглядит так: р = 1/3 т0пv2.

Здесь р — давление идеального газа, m0

масса молекулы, п — концентрация молекул, v 2 средний квадрат скорости молекул.

Обозначив среднее значение кинетической энергии поступательного движения молекул идеаль­ного газа Еk получим основное уравнение МКТ иде­ального газа в виде: р = 2/3nЕk.

Однако, измерив только давление газа, невоз­можно узнать ни среднее значение кинетической энергии молекул в отдельности, ни их концентра­цию. Следовательно, для нахождения микроскопиче­ских параметров газа нужно измерение какой-то еще физической величины, связанной со средней кинети­ческой энергией молекул. Такой величиной в физике является температура. Температура — скалярная физическая величина, описывающая состояние тер­модинамического равновесия (состояния, при кото­ром не происходит изменения микроскопических па­раметров). Как термодинамическая величина температура характеризует тепловое состояние системы и измеряется степенью его отклонения от принятого за нулевое, как молекулярно-кинетическая величина характеризует интенсивность хаотического движения молекул и измеряется их средней кинетической энергией.

 

Ek = 3/2 kT, где k = 1,38 • 10-23 Дж/К и назы­вается постоянной Больцмана.

Температура всех частей изолированной си­стемы, находящейся в равновесии, одинакова. Изме­ряется температура термометрами в градусах раз­личных температурных шкал. Существует абсолют­ная термодинамическая шкала (шкала Кельвина) и различные эмпирические шкалы, которые отличают­ся начальными точками. До введения абсолютной шкалы температур в практике широкое распростра­нение получила шкала Цельсия (за О °С принята точка замерзания воды, за 100 °С принята точка ки­пения воды при нормальном атмосферном давлении).

 

  1. Поляризация света. Естественный свет. Поляризатор.

 

Опыт показывает, что интенсивность светового пучка, проходящего через некоторые кристаллы, на­пример, исландского шпата, зависит от взаимной ориентации двух кристаллов. При одинаковой ориен­тации кристаллов свет проходит через второй кри­сталл без ослабления.

Если же второй кристалл повернут на 90°, то свет через него не проходит. Происходит явление по­ляризации, т. е. кристалл пропускает только такие волны, в которых колебания вектора напряженности электрического поля совершаются в одной плоскости, плоскости поляризации. Явление поляризации доказывает волновую природу света и поперечность све­товых волн.

Световая волна – поперечная и основная характеризующая ее векторная величина совершает колебания в плоскости, перпендикулярной направлению распространения волны. Основной хар – ой световой волны является электр – ий вектор Е, поэтому его называют световым вектором. Плоскостью колебаний называют плоскость, в которой колеблется световой вектор. Эта плоскость колебаний для каждого излучающего заряда не может быть произвольной, она определяется направлением распространения волны и вектором ускорения заряда. Плоскость, в которой совершает колебания вектор индукции магнитного поля В, называют плоскостью поляризации(для описания степени поляризации достаточно задать плоскость колебаний). Свет, у которого световой вектор колеблется беспорядочно одновременно во всех направлениях, перпендикулярных лучу, называется естественным или неполяризованным.

Поляризатор – устройство, выделяющее одно из всех направлений колебаний вектора Е. Свет, у которого направление колебаний вектора Е строго фиксировано, называется линейнополяризованным. Под поляризацией света понимают выделение из естественного света световых колебаний с определенным направлением. Поляризатором может служить пластина турмалина, вырезанная из кристалла параллельно его оптической оси. Действие турмалиновой пластинки заключается в том, что она пропускает колебания, электр – ий вектор которых параллелен оптической оси (колебания, вектор которых перпендикулярен оптической оси, почти полностью поглощаются. Зависимость показателя поглощения вещества от направления колебаний вектора Е называется дихроизмом. Устройство, которое позволяет выяснить, какова плоскость колебаний света, называется анализатором, который ничем по конструкции не отличается от поляризатора(разница в функциях). Поляризаторы и анализаторы называют поляроидами. Если плоскость колебаний электр – ого вектора совпадет с оптической осью поляризатора, то наблюдатель увидит свет, в противном случае свет полностью поглощается кристаллом.

Оптически активные вещества – это вещества, проходя через которые у света происходит поворот плоскости, зависящий от концентрации этого вещества в растворе.

 

Билет № 16

  1. Насыщенный и ненасыщенный пар. Зависимость давления насыщенного пара от температуры. Кипение. Зависимость температуры кипения от давления.

Испарение — парообразование, происходящее при любой температуре со свободной поверхности жидкости. Неравномерное распределение кинети­ческой энергии теплового движения молекул приво­дит к тому, что при любой температуре кинетическая энергия некоторых молекул жидкости или твердого тела может превышать потенциальную энергию их связи с другими молекулами. Большей кинетической энергией обладают молекулы, имеющие большую скорость, а температура тела зависит от скорости движения его молекул, следовательно, испарение со­провождается охлаждением жидкости. Скорость ис­парения зависит: от площади открытой поверхности, температуры, концентрации молекул вблизи жид­кости.Конденсация — процесс перехода вещества из газообразного состояния в жидкое. Испарение жидкости в закрытом сосуде при неизменной температуре приводит к постепенному увеличению концентрации молекул испаряющегося вещества в газообразном состоянии. Через некоторое время после начала испарения концентрация вещест­ва в газообразном состоянии достигнет такого значе­ния, при котором число молекул, возвращающихся в жидкость, становится равным числу молекул, поки­дающих жидкость за то же время. Устанавливается динамическое равновесие между процессами испа­рения и конденсации вещества. Вещество в газооб­разном состоянии, находящееся в динамическом равновесии с жидкостью, называютнасыщенным паром. (Паром называют совокупность молекул, по­кинувших жидкость в процессе испарения.) Пар, на­ходящийся при давлении ниже насыщенного, назы­ваютненасыщенным.

Вследствие постоянного испарения воды с по­верхностей водоемов, почвы и растительного покрова, а также дыхания человека и животных в атмосфере всегда содержится водяной пар. Поэтому атмосфер­ное давление представляет собой сумму давления су­хого воздуха и находящегося в нем водяного пара. Давление водяного пара будет максимальным при насыщении воздуха паром. Насыщенный пар в отли­чие от ненасыщенного не подчиняется законам иде­ального газа. Так, давление насыщенного пара не за­висит от объема, но зависит от температуры. Эта зависимость не может быть выражена простой форму­лой, поэтому на основе экспериментального изучения зависимости давления насыщенного пара от темпера­туры составлены таблицы, по которым можно опре­делить его давление при различных температурах. Давление водяного пара, находящегося в воз­духе при данной температуре, называют абсолютной влажностью, или упругостью водяного пара. По­скольку давление пара пропорционально концентра­ции молекул, можно определить абсолютную влаж­ность как плотность водяного пара, находящегося в воздухе при данной температуре, выраженную в ки­лограммах на метр кубический (р). Большинство явлений, наблюдаемых в приро­де, например быстрота испарения, высыхание раз­личных веществ, увядание растений, зависит не от количества водяного пара в воздухе, а от того, на­сколько это количество близко к насыщению, т. е. от относительной влажности, которая характеризует степень насыщения воздуха водяным паром.

При низкой температуре и высокой влажности повышается теплопередача и человек подвергается переохлаждению. При высоких температурах и влажности теплопередача, наоборот, резко сокра­щается, что ведет к перегреванию организма. Наибо­лее благоприятной для человека в средних климати­ческих широтах является относительная влажность 40—60%. Относительной влажностью называют от­ношение плотности водяного пара (или давления), находящегося в воздухе при данной температуре, к плотности (или давлению) водяного пара при той же температуре, выраженное в процентах, т. е. = р/р0 • 100%, или (р = р/р0 • 100%. Относительная влажность колеблется в широ­ких пределах. Причем суточный ход относительной влажности обратен суточному ходу температуры. Днем, с возрастанием температуры, и следовательно, с ростом давления насыщения относительная влаж­ность убывает, а ночью возрастает. Одно и то же ко­личество водяного пара может либо насыщать, либо не насыщать воздух. Понижая температуру воздуха, можно довести находящийся в нем пар до насыще­ния. Точкой росы называют температуру, при кото­рой пар, находящийся в воздухе, становится насы­щенным. При достижении точки росы в воздухе или на предметах, с которыми он соприкасается, начи­нается конденсация водяного пара. Для определения влажности воздуха используются приборы, которые называются гигрометрами и психрометрами.

При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение ее в пар. В жидкости всегда присутствуют растворенные газы, которые выделяются на дне и стенках сосуда, а так же на взвешенных в жидкости пылинках. Пары жидкости, которые находятся внутри пузырьков, являются ненасыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает и пузырьки захлопываются. Захлопывание происходит настолько быстро, сто стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит. Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависти от давления на ее поверхность. Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости. Чем больше внешнее давление, тем выше температура кипения. У каждой жидкости своя температура кипения, которая зависит от давления насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения. Критическая температура – это температура, при которой исчезают различия в физических свойствах между жидкостью и ее насыщенным паром. При критической температуре плотность и давление насыщенного пара становятся максимальными, а плотность жидкости, находящейся в равновесии с паром, - минимальной. Особое значение критической температуры состоит в том, что при температуре выше критической ни при каких давлениях газа нельзя обратить в жидкость. Газ, имеющий температуру ниже критической, представляет собой ненасыщенный пар.

 

  1. Закон прямолинейного распространения света. Закон отражения и преломления света. Полное отражение. Линзы. Формула тонкой линзы

 

В однородной среде свет распространяется прямолинейно. Об этом свиде­тельствуют резкие тени, отбрасываемые непрозрачными предметами при освещении их точечными источниками света.

 

угол падения равен углу отражения. При переходе из одной среды в другую преломляются и подчиня­ются закону преломления волн: отношение синуса угла падения к синусу угла преломления есть вели­чина постоянная для двух данных сред и равная отношению скорости электромагнитных волн в первой среде к скорости электромагнитных волн во второй среде и называется показателем преломле­ния второй среды относительно первой.

2. Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями.

Тонкой, если ее толщина мала по сравнению с радиусами кривизны ее поверхностей, в противном случае – толстой.

Формула тонкой линзы

Оптическая сила – это величина, обратная фокусному расстоянию

D=1/F

Измеряется в диоптриях. 1 диоптрий – это оптическая сила такой линзы, фокусное расстояние которой 1 м.

 

Билет № 17

 

  1. Свойства поверхности жидкости. Поверхностное натяжение. Смачивание и не смачивание. Капиллярные явления.

Давление. Закон Паскаля для жидкостей и газов. Сообщающиеся сосуды.

Физическая величина, равная отношению модуля силы, действующей перпендикулярно поверхности к площади это поверхности, называется давлением. Единица давления – паскаль, равный давлению, производимому силой в 1 ньютон на площадь в 1 квадратный метр. Все жидкости и газы передают производимое на них давление во все стороны. В цилиндрическом сосуде сила давления на дно сосуда равна весу столба жидкости. Давление на дно сосуда равно , откуда давление на глубине h равно . На стенки сосуда действует такое же давление. Равенство давлений жидкости на одной и той же высоте приводит к тому, что в сообщающихся сосудах любой формы свободные поверхности покоящейся однородной жидкости находятся на одном уровне (в случае пренебрежимо малости капиллярных сил). В случае неоднородной жидкости высота столба более плотной жидкости будет меньше высоты менее плотной. Характерная особенность, отличающая жидкость от газа, состоит в том, что жидкость на границе с газом образует свободную поверхность. Именно по этому вода в сосуде занимает не весть объем сосуда, а газ по всему объёму. Жидкость принимает форму, при которой площ её поверх оказывается минимальной. Избыточную потенциал энергию, которой обладают молекулы на поверхности жидкости, наз-ют поверхностной энергией Отношение поверхнстной энергии к площади поверхности наз-ся удельной поверхностной энергией . В состоянии устойчивого равновесия потенциал энергия минимальна

Сила, касательная к поверхности и перпендикулярная участку периметра. Огранич поверх жидкости- сила поверхностного натяжения Отношение модуля силы поверхностного натяжения к длине периметра, ограничивающего поверхность жидкости, наз-ся поверхностным натяжением. -удельная поверхностная энергия, или же поверхностное натяжение(где )

Смачив и несмачив. Жидкость, которая растекается тонкой пленкой по твердому телу, наз-ют смачивающей данное тело. Жидкость, которая не растекается, а стягивается в каплю, наз-ют не смачивающей это тело.

Сила поверхностного натяжения жидкости на границе с газом , сила поверхностного натяжения жидкости на границе с твердым телом , сила поверхностного натяжения твердого тела на границе с газом . Растекание жидкости по поверхности твердого тела произойдет, если + ,где -проекция силы поверхностного натяжения на горизонтальную поверхность.Угол θ, образованный направлением силы поверх натяж , действующей по касательной к поверх жидкости, с поверх твер. тела, наз-ся краевым углом. Как видно. Если поверх натяж на границе жидкость-тверд тело меньше, чем на границе тв. тело – газ(т.е. < ) то

>0, краевой угол острый и жидкость смачивает тверд тело. И наоборот. Если же - > , то условие равновесия не может быть выполнено, ибо конус не может быть больше единицы.Это значит что жидк полность смачивает тверд тело. Явление смачив и несмачив широко применяется в технике.

Капилляр явления. -формула высоты подъема жидкости в капилляре -плотность жидкости, r- радиус капилляра, g- ускорен своб пад,

 

  1. Механические колебания. Уравнение гармонических колебаний. Свободные и вынужденные колебания. Период колебаний груза на пружине и математического маятника. Превращение энергии при колебательном движении.

 

Механическими колебаниями называют дви­жения тела, повторяющиеся точно или приблизи­тельно через одинаковые промежутки времени. Основ­ными характеристиками механических колебаний являются: смещение, амплитуда, частота, период. Смещение — это отклонение от положения равнове­сия. Амплитуда — модуль максимального отклоне­ния от положения равновесия. Частота — число полных колебаний, совершаемых в единицу времени. Период — время одного полного колебания, т. е. ми­нимальный промежуток времени, через который происходит повторение процесса. Период и частота связаны соотношением: v = 1/T.

Гармоническими называют колебания, при которых какая-либо физическая величина, описывающая процесс, из­меняется со временем по закону косинуса или синуса:

Свободными — называют колебания, которые совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воз­действий на систему, совершающую колебания. На­пример, колебания груза на нити (рис. 9).

Рассмотрим процесс превращения энергии на примере колебаний груза на нити (см. рис. 9).

 

При отклонении маятника от положения рав­новесия он поднимается на высоту h относительно нулевого уровня, следовательно, в точке А маятник обладает потенциальной энергией mgh. При движе­нии к положению равновесия, к точке О, уменьшает­ся высота до нуля, а скорость груза увеличивается, и в точке О вся потенциальная энергия mgh превратит­ся в кинетическую энергию mv г/2. В положении равновесия кинетическая энергия имеет максималь­ное значение, а потенциальная энергия минимальна. После прохождения положения равновесия происхо­дит превращение кинетической энергии в потенци­альную, скорость маятника уменьшается и при мак­симальном отклонении от положения равновесия становится равной нулю. При колебательном движе­нии всегда происходят периодические превращения его кинетической и потенциальной энергий.

При свободных механических колебаниях не­избежно происходит потеря энергии на преодоление сил сопротивления. Если колебания происходят под действием периодически действующей внешней си­лы, то такие колебания называют вынужденными. Например, родители раскачивают ребенка на каче­лях, поршень движется в цилиндре двигателя авто­мобиля, колеблются нож электробритвы и игла швейной машины. Характер вынужденных колеба­ний зависит от характера действия внешней силы, от ее величины, направления, частоты действия и не зависит от размеров и свойств колеблющегося тела. Например, фундамент мотора, на котором он закреп­лен, совершает вынужденные колебания с частотой, определяемой только числом оборотов мотора, и не зависит от размеров фундамента.

 

Билет № 18

  1. Кристаллические тела и их свойства. Монокристаллы и поликристаллы. Аморфные тела.

Каждый может легко разделить тела на твер­дые и жидкие. Однако это деление будет только по внешним признакам. Для того чтобы выяснить, ка­кими же свойствами обладают твердые тела, будем их нагревать. Одни тела начнут гореть (дерево, уголь) — это органические вещества. Другие будут размягчаться (смола) даже при невысоких темпера­турах — это аморфные. Третьи будут изменять свое состояние при нагревании так, как показано на гра­фике (рис. 12). Это и есть кристаллические тела. Та­кое поведение кристаллических тел при нагревании объясняется их внутренним строением. Кристалли­ческие тела — это такие тела, атомы и молекулы которых расположены в определенном порядке, и этот порядок сохраняется на достаточно большом расстоянии. Пространственное периодическое распо­ложение атомов или ионов в кристалле называют кристаллической решеткой. Точки кристаллической решетки, в которых расположены атомы или ионы, называют узлами кристаллической решетки.

Кристаллические тела бывают монокристал­лами и поликристаллами. Монокристалл обладает единой кристаллической решеткой во всем объеме.

Анизотропия монокристаллов заключается в зависимости их физических свойств от направления. Поликристалл представляет собой соединение мел­ких, различным образом ориентированных монокри­сталлов (зерен) и не обладает анизотропией свойств.

Большинство твердых тел имеют поликристалличе­ское строение (минералы, сплавы, керамика).

Основными свойствами кристаллических тел являются: определенность температуры плавления, упругость, прочность, зависимость свойств от поряд­ка расположения атомов, т. е. от типа кристалли­ческой решетки.

Аморфными называют вещества, у которых отсутствует порядок расположения атомов и молекул по всему объему этого вещества. В отличие от кри­сталлических веществ аморфные вещества изотроп­ны. Это значит, что свойства одинаковы по всем на­правлениям. Переход из аморфного состояния в жидкое происходит постепенно, отсутствует опреде­ленная температура плавления. Аморфные тела не обладают упругостью, они пластичны. В аморфном состоянии находятся различные вещества: стекла, смолы, пластмассы и т. п.

Упругость — свойство тел восстанавливать свою форму и объем после прекращения действия внешних сил или других причин, вызвавших дефор­мацию тел. Для упругих деформаций справедлив за­кон Гука, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям, где — механическое на­пряжение,

 

e— относительное удлинение, Е — мо­дуль Юнга (модуль упругости). Упругость обусловле­на взаимодействием и тепловым движением частиц, из которых состоит вещество.

Пластичность — свойство твердых тел под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные де­формации после того, как действие этих сил прекра­тится.

 

  1. Оптические приборы: лупа, микроскоп, телескоп. Разрешающая способность телескопа. Фотоаппарат. Кинопроекторы.

 

Лупы - короткофокусные двояковыпуклые линзы, сделанные из стекла или пластмассы.

f-фокусн расстоян лизы, D-расстоян до предмета

Микроскоп. Микроскопом называют оптический прибор, служащий для рассматривания мелких предметов, невидимых невооруженным глазом. Микроскоп состоит из двух собирающих линз - короткофокусного объектива и длиннофокусного окуляра, расстояние между которыми можно изменять при настройке на резкость. Объектив создает действительное, перевернутое, увеличенное промежуточное изображение. Окуляр действует как лупа, создавая мнимое увеличенное изображение. -угловое увеличение микроскопа, - расстоян м\у зад фокусом объектива и передним фокусом окуляра

Телескоп: а)рефлекторы,б)рефракторы

Действие рефлектора - отражающего телескопа- основано на использовании зеркального, отражающего объектива. Впервые создал Ньютон. Ньютон стремился устранить хроиатическую аберрацию. Свойственную линзам.

В рефракторе- линзовом телескопе используются две системы линз. Оптическую систему телескопа для получения максимального углового увеличения конструируют так. Чтобы задний фокус объектива совпадал с передним фокусом окуляра

 

Для характеристики объектива телескопа вводят величину А, обратную предельному углу(ее наз-ют разрешающей силой телескопа) . Для увеличения разрешающей способности телескопа надо брать объективы большого диаметра. Другой путь—уменьшение длины волны регистрируемого излучения. Фотоаппарат представляет собой закрытую светонепрониц камеру и систему линз, называемую объективом.(состоит из 2-3х линз, навороченные 7-9)Диафрагма—при ее помощи получается четкое изображение предметов, находящихся на разных расстояниях от фотоаппарата. Диапроектор - назначение создавать на экране увеличенные изображения прозрачных рисунков или фоток, зафиксированных на кадре диафильма. Эпипроектор -получение изображения зафиксированного на бумаге.(тема такая как в цнире стоит). Кинопроектор отличается от диапроектора лишь тем, что в нем имеется механический прерыватель (обтюратор), который заслоняет объектив в тот момент, когда кинопленка продергивается на 1 кадр. Т.к. смена кадров происходит 24 раза в 1с. Глаз эти прерывания не замечает.

 

Билет № 19

 

  1. Внутренняя энергия и способы ее изменения. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам и адиабатному процессу.

Каждое тело имеет вполне определенную структуру, оно состоит из частиц, которые хаотиче­ски движутся и взаимодействуют друг с другом, по­этому любое тело обладает внутренней энергией. Внутренняя энергия — это величина, характери­зующая собственное состояние тела, т. е. энергия хаотического (теплового) движения микрочастиц си­стемы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Внутренняя энергия одноатомного идеального газа определяется по формуле U=3/2 • т/М • RT.

Внутренняя энергия тела может изменяться только в результате его взаимодействия с другими телами. Существуют два способа изменения внутрен­ней энергии: теплопередача и совершение механи­ческой работы (например, нагревание при трении или при сжатии, охлаждение при расширении).

Теплопередача — это изменение внутренней энергии без совершения работы: энергия передается от более нагретых тел к менее нагретым. Теплопере­дача бывает трех видов: теплопроводность (непо­средственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела); конвекция (перенос энергии потоками жидкости или газа) и излуче­ние (перенос энергии электромагнитными волнами). Мерой переданной энергии при теплопередаче яв­ляется количество теплоты (Q).

Эти способы количественно объединены в за­кон сохранения энергии, который для тепловых про­цессов читается так. Изменение внутренней энергии замкнутой системы равно сумме количества теп­лоты, переданной системе, и работы, внешних сил, совершенной над системой. D U= Q + А, где D U— изменение внутренней энергии, Q — количество теп­лоты, переданной системе, А — работа внешних сил. Если система сама совершает работу, то ее условно обозначают А'. Тогда закон сохранения энергии для тепловых процессов, который называется первым за­коном термодинамики, можно записать так: Q = Α' + D U, т. е. к







Date: 2016-11-17; view: 538; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.08 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию