Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Тема 1.2 Сплавы железа с углеродом
К железоуглеродистым сплавам относятся стали и чугуны. Основными элементами, от которых зависят структура и свойства сталей и чугунов, являются железо и углерод. Железо может находиться в двух аллотропических формах —α и γ. Железо с углеродом образует твердые растворы внедрения и химическое соединение. α-железо растворяет очень мало углерода (до 0,02 % при 727 °С). Твердый раствор углерода и других элементов в α -железе называется ферритом. Феррит имеет низкую твердость и прочность, γ-железо растворяет значительно большее количество углерода —до 2,14 % при 1147 °С. Твердый раствор углерода и других элементов в γ-железе называется аустенитом. В железоуглеродистых сплавах он может существовать только при высоких температурах. Аустенит пластичен. Железо с углеродом также образует химическое соединение Fe3C, называемое цементитом, или карбидом железа. В цементите содержится 6,67 % С; он имеет высокую твердость, но чрезвычайно низкую, практически нулевую, пластичность. Сплавы железа с углеродом, в которых в результате первичной кристаллизации в равновесных условиях получается аустенитная структура, называют сталями. Сталь —это железоуглеродистые сплавы с содержанием до 2,14 % С. Сплавы с содержанием более 2,14 % С, называют чугунами. Излом таких чугунов светлый, блестящий (белый излом), поэтому такие чугуны называют белыми. Процесс, в результате которого углерод выделяется в свободном состоянии в виде графита, называют графитизацией. Графит является неметаллической фазой.
«Чугун» В зависимости от состояния углерода в чугуне различают: белый чугун, в котором весь углерод связан в цементит; серый чугун в котором весь углерод находится в свободном состоянии в виде графита или часть углерода (большая) находится в виде графита, а часть в связанном состоянии в виде цементита; форма графита пластинчатая (рис. 10, а); высокопрочный чугун, то же, что и серый чугун, но форма графита шаровидная (рис. 10, б); ковкий чугун, то же, что и серый чугун, но форма графита хлопьевидная (рис. 10, в).
Рисунок 10 Микроструктура чугуна с различной формой графита и внешний вид графитовых включений в чугуне: а) пластинчатый графит в сером чугуне; б) шаровидный графит в высокопрочном чугуне; в) хлопьевидный графит в ковком чугуне
Серый чугун. Чугун, в котором весь углерод находится в свободном состоянии в виде графита, т. е. нет цементита, и структура ферритно-графитная называют серым ферритным чугуном. Графитизация и структура чугуна существенно зависят от химического состава и скорости охлаждения отливки. Серые чугуны кроме железа и углерода содержат примеси кремния, марганца, серы и фосфора. Кремний способствует графитизации чугуна (содержание его в чугуне 0,5—4,5 %). Марганец препятствует графитизации, способствует, как говорят, отбеливанию чугуна (содержание 0,4—1,3'%). Серу считают вредной примесью, так как она способствует отбеливанию чугуна, понижает прочностные характеристики и снижает жидкотекучесть (допускается < 0,12 %). Фосфор улучшает жидкотекучесть (при содержании до 0,8 %), но увеличивает хрупкость. Обычно для получения заданной структуры регулируют содержание углерода, кремния и марганца. На структуру чугуна значительно влияет скорость охлаждения. Механические свойства серого чугуна в основном определяются количеством, формой и размерами включений графита. Чем больше графита в чугуне, чем крупнее пластинки графита, тем ниже механические свойства. Для получения мелких, завихренной формы чешуек графита применяют модифицирование —добавление в жидкий чугун перед разливкой ферросилиция или силикокальция, играющих роль зародышевых центров выделения графита. Серые чугуны маркируют буквами СЧ, затем ставят два двузначных числа: первое число показывает предел прочности при растяжении, второе — предел прочности при изгибе. Например, марка СЧ 15-32 показывает, что, чугун имеет σв= 150 MПа (15 кгс/мм2) и σи = = 320 МПа (32 кгс/мм2). Отливки из серого чугуна широко применяют в машиностроении: для станин металлорежущих станков, корпусов, поршневых колец, гильз автомобильных и тракторных двигателей и др. Высокопрочные чугуны. Для получения графита в виде шаровидных включений в ковш с жидким чугуном вводят небольшое количество металлического магния. Высокопрочные чугуны маркируют буквами ВЧ, затем ставят два числа: первое число показывает предел прочности при растяжении, второе —относительное удлинение; например, ВЧ 38-17; ВЧ 120-4 и др. Чугуны с шаровидным графитом применяют для ответственных деталей, например коленчатых валов, кулачковых валиков и др. Ковкий чугун. Этот чугун получают в результате длительного нагрева (отжига) доэвтектического белого чугуна, при котором происходит распад цементита с образованием графита (хлопьевидной формы, рис.10,в). То есть процесс графитизации (такой отжим называют графитизирующим). Ковкие чугуны маркируют буквами КЧ, далее следуют цифры предела прочности при растяжении и относительного удлинения; например, КЧ 35- 10, КЧ- 63-2. «Углеродистые и легированные стали» Сталью называют сплав железа с углеродом и другими элементами с содержанием до 2- % С (точнее до 2,14 % С). Если сталь имеет в своем составе железо и углерод и некоторое количество постоянных примесей — марганец (до 0,7 %), кремний (до 0,4 %), серу (до 0,06 %), фосфор (до 0,07 %) и газы, то такую сталь называют углеродистой. Если в процессе выплавки углеродистой стали к ней добавляют легирующие элементы—хром, никель, ванадий и др., а также марганец и кремний в повышенном количестве, то такую сталь называют легированной. «Влияние на сталь углерода, постоянных примесей и легирующих элементов» Углерод оказывает основное влияние на свойства стали. С увеличением содержания углерода в стали повышается ее твердость и прочность, уменьшается пластичность и вязкость. Марганец и кремний — полезные примеси. Их добавляют в сталь при выплавке ее для раскисления стали. Сера с железом образует сульфид железа FeS, который в стали находится в виде эвтектики Fe—FeS с температурой плавления 985^°С. При нагреве стали до температуры 1000—1200 °С для горячей обработки давлением эвтектика плавится, сталь становится хрупкой н при деформации разрушается. Это явление называют красноломкостью. Красноломкость устраняет марганец. Образующийся пластичный сульфид марганца MnS плавится при температуре 1620 °С. Фосфор растворяется в феррите, повышает хрупкость стали, т. е. вызывает так называемую хладноломкость. Газы (кислород, азот, водород) частично растворены в стали, присутствуют в виде неметаллических включений (окислы, нитриды). Кислород в стали находится главным образом в виде окислов А1203, Si02 и др. Окислы, в отличие от сульфидов, хрупки, при горячей обработке не деформируются, а крошатся, разрыхляют металл. В присутствии большого количества водорода возникает опасный дефект — внутренние надрывы в металле, так называемые флокены. Легирующие элементы оказывают различное влияние на аллотропические превращения в железе, фазовые превращения в стали. К элементам, способным образовывать карбиды, относятся Мn, Cr, W, V и др. Обозначают карбиды формулами, например Cr7C3, W2C, VC и др. Элементы, не образующие карбидов Ni, Si, находятся в стали главным образом в твердом растворе. Легирующие элементы в различной степени положительно влияют на изменение механических свойств феррита. Все легирующие элементы, за исключением кобальта, замедляют распад аустенита. Увеличивая устойчивость аустенита, легирующие элементы уменьшают критическую скорость закалки и увеличивают прокаливаемость. Карбидообразующие элементы (за исключением марганца) препятствуют росту зерна аустенита при нагреве.
«Классификация сталей» Стали классифицируют по следующим признакам: химическому составу, качеству, структуре, применению. По химическому составу различают стали углеродистые и легированные. В зависимости от содержания легирующих элементов легированные стали делят на: низколегированные (до 2,5%), среднелегированные (2,5—10%) и высоколегированные (более 10 %). По качеству различают стали обыкновенного качества, качественные, высококачественные и особо высококачественные. При этом учитывается способ выплавки и содержание серы и фосфора. По структуре различают стали в отожженном и нормализованном состояниях: в отожженном состоянии —доэвтектоидный (компонента меньше нормы), заэвтектоидный (компонента больше нормы), ледебуритный (одновременная кристаллизация аустенита и цементита), ферритный (тв.раст-р углерода в α-железе) и аустенитный (тв.раст-р углерода в γ-железе) классы; в нормализованном состоянии—перлитный (одновременная кристаллизация феррита и цементита), мартенситный (перенасыщенный твердый раствор углерода в α-железе). К перлитному классу относят углеродистые и легированные стали с низким содержанием легирующих элементов, к мартенситному — с более высоким и к аустенитному — с высоким содержанием легирующих элементов. По применению стали подразделяют на следующие группы: конструкционные стали—для деталей машин и конструкций; инструментальные стали —для различного инструмента; стали и сплавы с особыми свойствами —например, жаропрочные, коррозионно-стойкие, магнитные и др.
«Маркировка сталей» Обозначение сталей обыкновенного качества — буквенно-цифровое, например Ст0, Ст1 —Ст6, БСт0, БСт1 —БСт6, ВСт2—ВСт5. Буквы Ст означают сталь (в марках других сталей буквы Ст не указываются), цифры от 0 до 6 —условный номер марки в зависимости от химического состава и механических свойств; буквы Б и В —группы стали (группа А в марке стали не указывается). Степень раскисления — индексами: кп — кипящая, пс—полуспокойная, сп—спокойная, например Ст4кп, Ст4пс, Ст4сп, БСт3кп. Углеродистые качественные конструкционные стали обозначают двузначными цифрами, показывающими среднее содержание углерода в стали, выраженное в сотых долях процента. Например, сталь марки 15 содержит в среднем 0,15 % С, сталь 40 —0,40 % С и т. д. Степень раскисления указывают в конце марки, например сталь 08кп. Углеродистые инструментальные стали маркируют следующим образом: впереди ставят букву У, за ней цифру —среднее содержание углерода, выраженное в десятых долях процента. Например, сталь марки У9 содержит в среднем 0,9 % С, сталь У11 — 1,1 % С. В основу обозначения марок легированных сталей положена буквенно-цифровая система. Легирующие элементы указывают русскими буквами: марганец —Г, кремний —С, хром — X, никель —Н, Вольфрам — В, ванадий —Ф, титан —Т, молибден —М, кобальт—К, алюминий — Ю, медь—Д, бор — Р, ниобий—Б, цирконий—Ц, фосфор —П, азот —А. В марках легированных конструкционных сталей, например 20Х, 18Г2С, 60С2, 18ХГТ, 38ХН3МФ и др., двузначные цифры в начале марки —это среднее содержание углерода в сотых долях процента, а цифры после букв — примерное содержание соответствующего легирующего элемента в целых процентах; отсутствие цифры указывает на то, что оно составляет до 1,5 % и менее. Для высококачественных сталей в конце марки ставят букву А; например, сталь 12Х2Н4 — качественная сталь, а сталь 12Х2Н4А —высококачественная. В марках легированных инструментальных сталей, например X, 9ХС, ХВГ, ЗХ2В8Ф, 5ХЗВЗМФС и др., одна цифра в начале марки указывает среднее содержание углерода в десятых долях процента, если его содержание менее 1 %. При содержании в сталях 1 % С или более цифру не пишут. Расшифровка в марках инструментальных сталей содержания легирующих элементов такая же, как и в конструкционных сталях. Все стали инструментальные легированные и с особыми свойствами всегда высококачественные и поэтому в обозначениях этих сталей буква А не ставится. В маркировке сталей в начале иногда ставят буквы, указывающие их применение: А — автоматные стали, Р — быстрорежущие, Ш—шарикоподшипниковые, Э —электротехнические.
«Конструкционные стали» Конструкционные стали должны обладать определенным комплексом механических свойств, которые в наибольшей степени определяют работоспособность, т. е. стойкость и надежность деталей и конструкций, которые называют конструктивной прочностью. Повышения конструктивной прочности можно достичь только в совокупности металлургических, технологических и конструкторских мероприятий. Конструкционные строительные стали. Для сварных и клепаных конструкций в строительстве, мостостроении, судостроении применяют углеродистые стали обыкновенного качества (при незначительных напряжениях в конструкциях) и низколегированные стали с невысоким содержанием углерода (при более высоких напряжениях). Листовая сталь для холодной штамповки. В зависимости от степени деформации листа сталь делят на следующие группы: весьма глубокой вытяжки (ВГ), глубокой вытяжки (Г), нормальной вытяжки (Н). Для холодной штамповки применяют, например, сталь марки 08кп. В этой стали мало углерода (0,08 %) и кремния (==с 0,03 %), что является положительным, так как углерод и кремний снижают способность стали к вытяжке. Штампуемость листовой стали ухудшается при наличии в ней крупного и неоднородного по размерам зерна. Цементуемые (низкоуглеродистые) стали. Для изготовления деталей небольших размеров, работающих на износ при малых нагрузках, когда прочность сердцевины не влияет на эксплуатационные свойства (втулки, валики, шпильки и др.), применяют углеродистые стали марок 15, 20. После цементации, закалки в воде и низкого отпуска поверхность стали имеет высокую твердость, а сердцевина не упрочняется. Для тяжело нагруженных деталей, в которых необходимо иметь высокую твердость поверхностного слоя и достаточно прочную сердцевины, применяют легированные стали 20Х, 12Х2Н4А, 18ХГТ (зубчатые колеса, оси, поршневые пальцы) Улучшаемые (среднеуглеродистые) стали. Эти стали называют улучшаемыми потому, что их обычно подвергают улучшению — закалке в масле и высокому отпуску (550—650 °С) с получением структуры сорбита. Улучшаемые стали должны иметь высокую прочность, пластичность, высокий предел выносливости, хорошую прокаливаемость. Пружинно-рессорные стали. Эти стали должны иметь особые свойства в связи с условиями работы пружин и рессор, которые служат для смягчения толчков и ударов, действующих на конструкции в процессе работы, и поэтому основным требованием, предъявляемым к пружинно-рессорным сталям, являются высокий предел упругости и выносливости. Шарикоподшипниковые стали. Основной сталью является сталь ШХ15 (0,95 — 1,05 % С; 1,3 — 1,65 % Сг). Содержание в ней углерода и хрома обеспечивает получение после закалки в масле высокой твердости, износостойкости, достаточной вязкости и необходимой прокаливаемости. Автоматные стали. Эти стали содержат повышенное количество серы и фосфора, хорошо обрабатываются на металлорежущих станках, образуя короткую, ломкую стружку. Недостаток автоматных сталей—пониженная пластичность, поэтому их применяют для изготовления малоответственных деталей, от которых не требуется высоких механических свойств (крепежные детали, втулки и др.). «Инструментальные стали» В связи с различными условиями работы инструмента инструментальные стали по назначению делят на следующие группы: стали для режущих инструментов, измерительных инструментов, штамповые стали. «Стали и сплавы с особыми свойствами» 1) Жаростойкие и жаропрочные стали и сплавы. При высокой температуре в условиях эксплуатации в среде нагретого воздуха в продуктах сгорания топлива происходит окисление стали (газовая коррозия). На поверхности сначала образуется тонкая пленка окислов, которая с течением времени увеличивается, и образуется окалина. Способность стали сопротивляться окислению при высоких температурах называется жаростойкостью (окалиностойкостью). Если окисная пленка пористая, окисление происходит интенсивно; если плотная, окисление замедляется или даже прекращается. Для получения плотной пленки сталь легируют хромом, кремнием и алюминием. К жаропрочным относят стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течении определенного времени и обладающие при этом достаточной жаростойкостью (детали котлов и турбин) 2) Коррозийно-стойкие (нержавеющие) стали. 3) Магнитные стали и сплавы. Делятся на магнитно – мягкие и магнитно – твердые. Магнитно – мягкие стали (электротехническое железо и сталь, железоникелевые сплавы) применяют для сердечников, полюсных наконечников электромагнитов. Магнотно – твердые стали (высокоуглероистые и легированные стали) применяют для изготовления постоянных магнитов.
Date: 2016-05-25; view: 2842; Нарушение авторских прав |