Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Выборка, способы ее формирования. Репрезентативная выборка⇐ ПредыдущаяСтр 47 из 47
Выборка стандартизации. При разработке и применении любой точки отсчета следует обращать особое внимание на выборку испытуемых, на которой проводится стандартизация диагностической методики. В математической статистике принято различать такие понятия, как генеральная совокупность (популяция) и выборка. Всякая большая совокупность людей, которую хотели бы исследовать или относительно которых собираются делать выводы, называется генеральной совокупностью. Выборка — это часть или подмножество совокупности. Проводить исследование всей популяции не принято. Обычно из нее выделяют группу людей — выборку стандартизации — которая реально подвергается тестированию, и с ее помощью оценивается генеральная совокупность. Чтобы оценки носили достоверный характер, выборка должна быть репрезентативна, представительна рассматриваемой популяции, т. е. ее вероятностные свойства должны совпадать или быть близкими к свойствам генеральной совокупности. А. Анастази приводится пример формирования репрезентативной выборки при стандартизации шкалы Векслера. Выборка включала 1700 человек с равным количеством мужчин и женщин. Испытуемые в возрасте от 16 до 64 лет были распределены по семи возрастным уровням. При формировании выборки исследователи опирались на данные последней переписи населения США. Учитывалось пропорциональное распределение населения по географическим районам, принадлежность к городскому и сельскому населению, принадлежность к белой или цветной расе, учитывались также уровень образования и профессия. На каждом возрастном уровне в выборку были введены один мужчина и одна женщина, находящиеся в учреждениях для умственно отсталых. По мнению А. Анастази, подавляющее большинство диагностических методик стандартизовано не для столь широких популяций, как многие полагают. Трудно рассчитывать, что по какому-либо тесту имеются адекватные нормы для таких обширных популяций, как, например, «взрослые американцы-мужчины» или «американские дети 14-летнего возраста». Выборки, ориентированные на широкие популяции, не всегда репрезентативны и чаще всего бывают смещены в тех или иных отношениях (т. е. некоторые подгруппы популяции могут быть представлены непропорционально своей численности). Так, если определить популяцию как «14-летние дети», а выборку стандартизации составить из 14-летних школьников, то ее нельзя рассматривать в качестве репрезентативной, поскольку не все 14-летние дети являются школьниками. В этом случае лучше сузить определение популяции (т. е. определить ее как «14-летние школьники»), чем переносить нормы, полученные на школьниках, на популяцию 14-летних детей. Таким образом, одним из способов обеспечения репрезентативности выборки является ограничение популяции. Ограничить популяцию можно по разным признакам: по возрасту, полу, социальному происхождению, профессии, социально-экономическому статусу, здоровью и т. д. Такая популяция определяется как специфическая, и стандартизация диагностических методик осуществляется на узконаправленных выборках, которые репрезентативны специфической популяции. Отбор испытуемых в выборку стандартизации осуществляется следующим образом: 1) дается определение популяции с выделением в ее структуре переменных, значимых и малозначимых для изучаемого психического явления (возраст, образование, профессия… 2) популяция делится на части в соответствии со значимыми переменными; 3) испытуемые отбираются в случайном порядке и пропорционально численности каждой значимой части совокупности. Случайный отбор может осуществляться по алфавиту, по таблице случайных чисел или другим способом. Важно, чтобы у всех представителей популяции были равные шансы попасть в выборку стандартизации. Объем выборки может варьироваться в широких пределах, но ее минимальный порог, необходимый для получения достоверных результатов, — порядка 200 человек. Репрезентативная выборка – это такая выборка, в которой все основные признаки генеральной совокупности, из которой извлечена данная выборка, представлены приблизительно в той же пропорции или с той же частотой, с которой данный признак выступает в этой генеральной совокупности. Таким образом, если 50% всех законодательных органов штатов собираются лишь раз в два года, приблизительно половина состава репрезентативной выборки законодательных органов штатов должна быть такого типа. Если 30% избирателей Пенсильвании принадлежат к “синим воротничкам”, около 30% репрезентативнойвыборки для этих избирателей (а не 100%, как в приведенном выше примере) должны быть из числа “синих воротничков”. И если 2% всех студентов колледжей являются спортсменами, приблизительно та же самая часть репрезентативной выборки студентов колледжей должна приходиться на спортсменов. Иными словами, репрезентативная выборка представляет собой микрокосм, меньшую по размеру, но точную модель генеральной совокупности, которую она должна отражать. В той степени, в какой выборка является репрезентативной, выводы, основанные на изучении этой выборки, можно без всяких опасений считать применимыми к исходной совокупности. Это распространение результатов и есть то, что мы называем генерализуемостью. При составлении выборки можно поступать двумя способами: после того как объект отобран и над ним произведено наблюдение, он может быть возвращен или не возвращен в генеральную совокупность. В соответствии со сказанным выборки подразделяют на повторные и бесповторные. Для того, что бы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, что бы объекты выборки правильно его представляли. Другими словами, выборка должна правильно представлять пропорции генеральной совокупности. Это требование коротко формулируют так: выборка должна быть репрезентативной (представительной). Ведущий принцип, лежащий в основе такой процедуры, - это принцип рандомизации, случайности. Выборка называется случайной (иногда мы будем говорить простая случайная или чистая случайная выборка), если выполняется два условия. Во-первых, выборка должна быть построена таким образом, чтобы любой человек или объект в пределах совокупности имел равные возможности быть отобранным для анализа. Во-вторых, выборка должна быть сформирована так, чтобы любое сочетание из n объектов (где n - просто количество объектов, или случаев, в выборке) имело равные возможности быть отобранным для анализа. Таким образом, построение простой случайной выборки обычными методами требует большого объема технической работы, особенно когда речь идет о широкомасштабных явлениях. По этой причине процедуры формирования случайной выборки видоизменяют, что бы увеличить их возможности. Процедура выглядит следующим образом: Оценивается количество объектов в совокупности и делится на желательное количество объектов в выборке. Если обозначить результат через k, то фактически можно сказать, что желаемая выборка - это один из каждых k-объектов, или, говоря по-другому, каждый k-й объект. Техника формирования случайной систематической выборки по сравнению с формированием простой случайной выборки имеет два важных преимущества: ее удобно применять по отношению к большим совокупностям, отвечающим условию наличия единого списка, и у нее много потенциальных возможностей использования. Тем не менее, применяя эту процедуру, мы должны иметь в виду одну очень важную ее особенность. Поскольку случайная систематическая выборка менее случайна, чем прямой выбор в результате может быть получена менее репрезентативная подгруппа. Это можно проследить и на уровне определения, и на операциональном уровне. Чтобы установить необходимый объем выборки следует учесть несколько факторов. Один из наиболее важных - гомогенность - степень близости друг к другу членов данной совокупности с точки зрения изучаемых характеристик. Если каждый индивидуум в совокупности в точности такой же, как все остальные, то, выбрав всего лишь одного из них, получим действительно репрезентативную выборку. Напротив, если каждый индивидуум в совокупности абсолютно не похож ни на какой другой, то, прежде чем сможем утверждать, что у нас имеется репрезентативная выборка, потребуется провести перепись всей совокупности. В первом случае совокупность называют полностью гомогенной, во втором -полностью гетерогенной. Разумеется, в действительности большинство совокупностей располагается между этими двумя полюсами. Чем гомогенное данная совокупность, т.е. чем меньше различий между ее членами, тем меньшая по объему выборка необходима для ее представления. Напротив, чем гетерогеннее совокупность, т.е. чем больше различий между ее членами, тем большая выборка необходима для ее представления. Таким образом, внутри уровней можно использовать, не теряя при этом репрезентативности, выборки меньшего объема, чем следовало бы для всей совокупности. Сходным образом, чем больше категорий необходимо исследовать, тем больше должна быть выборка.
60.Диагностика способностей. Область применени я тестов способностей. (повт. 38) Распределение результатов, полученных при тестировании испытуемых выборки стандартизации, можно изобразить с помощью графика – кривой нормального распределения. Этот график показывает, какие значения первичных показателей входят в зону средних значений (в зону нормы), а какие выше и ниже нормы. Например, на рис.1 изображена кривая нормального распределения для теста "Прогрессивные матрицы Равена".
Чаще всего в руководствах к тому или иному тесту можно встретить выражения нормы не в виде сырых баллов, а в виде стандартных производных показателей. То есть нормы к данному тесту могут быть выражены в виде Т-баллов, децилей, процентилей, станайнов, стандартных IQ и др. Перевод сырых значений (первичных показателей) в стандартные (производные) делается для того, чтобы результаты, полученные по разным тестам, можно было сравнивать между собой. Производные показатели получаются путем математической обработки первичных показателей. Первичные показатели по разным тестам нельзя сравнивать между собой по причине того, что тесты имеют различное внутреннее строение. Например, IQ, полученный с помощью теста Векслера, нельзя сравнивать с IQ, полученным с помощью теста Амтхауэра, так как эти тесты исследуют разные особенности интеллекта и IQ как суммарный показатель по субтестам складывается из показателей разных по строению и содержанию субтестов. "Любая норма, в чем бы она ни выражалась, ограничивается конкретной совокупностью людей, для которых она вырабатывалась... Применительно к психологическим тестам они (нормы) никоим образом не абсолютны, не универсальны и не постоянны. Они просто выражают выполнение теста испытуемыми из выборки стандартизации" (А.Анастази)
Date: 2016-05-23; view: 2363; Нарушение авторских прав |