Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Линейная модель парной регрессии и корреляции
Рассмотрим простейшую модель парной регрессии – линейную регрессию. Линейная регрессия находит широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида
Уравнение вида Построение линейной регрессии сводится к оценке ее параметров –
Т.е. из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной (рис. 1.2):
Рис. 1.2. Линия регрессии с минимальной дисперсией остатков. Как известно из курса математического анализа, чтобы найти минимум функции (1.2), надо вычислить частные производные по каждому из параметров
После несложных преобразований, получим следующую систему линейных уравнений для оценки параметров
Решая систему уравнений (1.4), найдем искомые оценки параметров
где
Ковариация – числовая характеристика совместного распределения двух случайных величин, равная математическому ожиданию произведения отклонений этих случайных величин от их математических ожиданий. Дисперсия – характеристика случайной величины, определяемая как математическое ожидание квадрата отклонения случайной величины от ее математического ожидания. Математическое ожидание – сумма произведений значений случайной величины на соответствующие вероятности. Параметр Формально Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции
Линейный коэффициент корреляции находится в пределах: Теснота линейной связи между переменными может быть оценена на основании шкалы Чеддока:
Положительное значение коэффициента корреляции говорит о положительной связи между х и у, когда с ростом одной из переменных другая тоже растет. Отрицательное значение коэффициента корреляции означает, с ростом одной из переменных другая убывает, с убыванием одной из переменной другая растет. Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции
где Соответственно величина После того как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров. Проверить значимость уравнения регрессии – значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной. Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппроксимации:
Средняя ошибка аппроксимации не должна превышать 8–10%. Оценка значимости уравнения регрессии в целом производится на основе Согласно основной идее дисперсионного анализа, общая сумма квадратов отклонений переменной
где Схема дисперсионного анализа имеет вид, представленный в таблице 1.1 ( Таблица 1.1
Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину
Фактическое значение Для парной линейной регрессии
Величина
В парной линейной регрессии оценивается значимость не только уравнения в целом, но и отдельных его параметров. С этой целью по каждому из параметров определяется его стандартная ошибка: Стандартная ошибка коэффициента регрессии определяется по формуле:
где Величина стандартной ошибки совместно с Для оценки существенности коэффициента регрессии его величина сравнивается с его стандартной ошибкой, т.е. определяется фактическое значение Стандартная ошибка параметра
Процедура оценивания существенности данного параметра не отличается от рассмотренной выше для коэффициента регрессии. Вычисляется Значимость линейного коэффициента корреляции проверяется на основе величины ошибки коэффициента корреляции
Фактическое значение Существует связь между
В прогнозных расчетах по уравнению регрессии определяется предсказываемое
где
Date: 2016-05-23; view: 529; Нарушение авторских прав |