Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Глава 3.Применение умножителей





3.1 Расчёт параметров генератора импульсов

Для схемы возбуждения жидкокристаллического индикатора фазовым методом необходимо подавать на него сигнал прямоугольной формы с частотой 15…20Гц. Поэтому выберем генератор показанный на рисунке 3.1

Рисунок 10 а) схема простейшего мультивибратора б) временная диаграмма

Отрицательной обратной связью через резистор R охвачен инвертор DD1. Самовозбуждение обеспечивается емкостной связью, охватывающей два инвертора. Релаксационные процессы перезаряда конденсатора С через резистор R, которые включены последовательно между выходами DD1 и DD2, определяют длительности полупериодов Т1, Т2 частоту генерации f, и скважность выходных импульсов Q.

Для ИМС ТТЛ-типа на сопротивление R накладывается ограничение сверху, поэтому обычно для серий 133, 155 оно не превышает 510 Ом. При R=390 Ом частота генерации приближенно определяется соотношением.

fкГц=1,2/СмкФ

Пусть частота генерации 40Гц, тогда С=1,2/0,04=30мкФ.

Для конденсатора К73-26-33 частота генерации будет f=1,2/33=36Гц. Данная частота удовлетворяет требованию не менее 20Гц.

Достоинства рассмотренного мультивибратора – простота схемы и стабильность частоты генерации: при изменении напряжения питания ИМС ТТЛ-типа от 4,5 до 5,5 вольт частота изменяется только на 2%. Главный недостаток схемы – искажение вершин выходных импульсов. Но для данной схемы этот недостаток не важен, поскольку от генератора требуется генерировать сигналы не с высокостабильной частотой, а с частотой которой хватит для того чтобы обновлять данные на жидкокристаллическом индикаторе.

Микрокалькулятор

Основные узлы, входящие в состав микрокалькулятора это БИС, выполненная на одном кристалле и реализующая работу сотен или тысяч логических элементов, клавишная панель, семисегментный индикатор и источник питания. Как видно из рисунка 11, используемая в микрокалькуляторе БИС разбивается на ряд функциональных подсистем. Показанная на рисунке организация БИС только один из нескольких возможных способов обеспечения функционирования микрокалькулятора. Ядро системы — параллельный сумматор-вычитатель. Тактовый генератор синхронизует работу всех частей системы. Тактовая частота довольно высока-от 25 до 500 кГц. При включении микрокалькулятора начинают непрерывно вырабатываться тактовые импульсы, и все схемы работают «вхолостую» до тех пор, пока с клавиатуры не поступит какая-нибудь команда.

 

Рисунок 11 Схема простейшего микрокалькулятора

Краткое описание принципа работы микрокалькулятора: Шифратор преобразует введенное число в двоично-десятичный код. Блок управления направляет двоичную комбинацию в регистр индикатора, где эта двоичная комбинация запоминается. Эта информация поступает также на входы семисегментного дешифратора, который переводит в возбужденное состояние соответствующие линии. При поступлении «включающего» импульса по шине опроса, подключенной к первому разряду индикатора, в этом разряде кратковременно высвечивается введенная цифра. Опрос разрядов индикатора осуществляется с большой частотой, и поэтому кажется, что цифра светится непрерывно, хотя на самом деле младший разряд индикатора (как и любой другой разряд) включается и выключается много раз за 1 с. Затем мы нажимаем клавишу «+». Код операции сложения передается в дополнительный регистр (Х-регистр) и запоминается. Теперь мы нажимаем на панели клавишу с второй цифрой. Шифратор преобразует десятичное введенное число в двоично-десятичный код. Блок управления пересылает двоичную комбинацию в регистр индикатора, далее эта комбинация поступает на входы дешифратора-формирователя, и после дешифрации на индикаторе появляется введенная вторая цифра. В это же время блок управления пересылает первую двоичную комбинацию в регистр операндов. Теперь мы нажимаем клавишу «=», и в блоке управления организуется проверка содержимого Х-регистра, чтобы «узнать», что же надо делать. Ответ Х-регистра: нужно сложить содержимое регистра операндов и регистра индикатора. Управляющее устройство подает соответствующие двоичные комбинации на входы сумматора. Результат сложения помещается в накапливающий регистр (аккумулятор). Блок управления реализует пересылку полученной двоичной комбинации в регистр индикатора, и на индикаторе появляется.

При обработке многоразрядных чисел и более сложных их представлений, содержащих десятичную точку, работа блока управления осуществляется в соответствии с инструкциями, находящимися в регистре команд. Цикл решения сложной задачи может включать сотни элементарных операций, запрограммированных в ПЗУ. Особенно впечатляет то, что даже сотни таких операций выполняются за время, меньшее 1/10 с.

К преимуществам данного устройства можно отнести хорошее быстродействие и реализацию многочисленных арифметических операций.

Недостаток – сложное конструктивное исполнение устройства.

 

 

ЗАКЛЮЧЕНИЕ

При разработке арифметико-логического устройства лучше придерживаться организации схемы комбинационного умножителя, который является самым быстродействующим из рассмотренных, а также параллельного устройства сложения-вычитания, которое является более простым по сравнению с микрокалькулятором.

В данном устройстве используются микросхемы разных типов логики, то и напряжение питания у них разное. Так для всех микросхем ТТЛ логики используется напряжение питания 5В. Для микросхемы К561ИД5 необходимо два источника питания +5В и –5В. Для микросхемы К561ПУ8 необходимо напряжение питания +10В. Поэтому для защиты от помех в цепь питания для каждого типа логики устанавливаются конденсаторы. Для ТТЛ шесть электролитических конденсаторов К53-26-6,8 и шесть высокочастотных К70-6-0,047. Для КМДП на питании +5В используются конденсаторы установленные для ТТЛ, на питании –5В устанавливается по одному конденсатору из вышеперечисленных, то же на питании +10В.

Т.к. большая часть микросхем необходимая для построения умножителя есть в ТТЛ логике, то основную часть электрической принципиальной схемы реализована на элементах ТТЛ логики. На КМДП логике была построена часть схемы отвечающая за преобразование двоично-десятичного кода в код семисегментного индикатора и реализующая фазовый принцип управления цифровым индикатором. Также на КМДП логике построена часть схемы, отвечающая за преобразование уровней сигналов между ТТЛ и КМДП логикой.

Существуют некоторое ограничение по применению данного устройства для умножения чисел - размер числа не может превышать 3 двоичных разряда. Существует возможность сброса введенных данных (если при вводе пользователь ошибся либо просто провел операцию умножения и желает провести следующую).

Список литературы

1. Зубчук В.И. и др. Справочник по цифровой схемотехнике. 2006.- 448 с.

2. Нефедов А.В. Интегральные микросхемы и их зарубежные аналоги. 2010.- 512с.

3. Акимов Н.Н. Резисторы конденсаторы: Справочник. 2007.- 592 с

4. Шеин А.Б. Методы проектирования электронных устройств. 2010. – 532 с

5. Бойко В. Схемотехника электронных систем. Цифровые устройства. 2010. -

512 с

Date: 2016-05-23; view: 313; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию