Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Закон сохранения энергии





 

В 1845-1847 гг. получил тщательное обоснование всеобщий закон природы - закон сохранения количества энергии: в изоли­рованной системе количество энергии остается постоянным. Этот закон часто называют первым законом термодинамики. Однако первое строгое определение энергии появилось только в 1857 г. Его дал В. Томсон (лорд Кельвин): энергия материальной системы в определенном состоянии есть измеренная в единицах механической работы сумма всех действий, которые произво­дятся вне системы, когда она любым способом переходит из этого состояния в произвольно выбранное нулевое состояние. Заметив, что все виды энергии превращаются в тепло, которое переходит ко всем более холодным телам и в конечном итоге рассеивается в окружающем пространстве, излучаясь затем в мировое пространство, естествоиспытатели ввели понятие «эн­тропия» как меру рассеяния энергии. Чем больше рассеивается энергия, тем больше растет энтропия.

Энергия и энтропия - слова греческого происхождения. «Эн» обозначает «в», или «содержащаяся», «эрг» - корень сло­ва «работа», а «тропе» - «превращение». Выбор этих терминов обозначал желание отразить в них сущность соответствующих им понятий: изменение энергии изолированной системы ΔЕ = Е 1 - Е2 выражает максимальное количество работы Wmax, кото­рую система теоретически могла совершить (например, пар в цилиндре), переходя из состояния 1 в состояние 2. Изменение энтропии ΔS = S1- S2 означает ту часть Q = ТΔS запаса энергии Е, которая в реальных условиях перехода при температуре окружающей среды превращается в тепло, рассеивается, уменьшая величину действительной работы до Wp = Wmax –T0ΔS. Р. Клаузиус, предлагая в 1865 г. слово «энтропия», писал, что употребил его для большего сходства со словом «энергия», так как обе соответствующие этим названиям величины близки по физическому смыслу.

Изменение энергии системы определяется только раз­ностью ее значения в начальном и конечном состояниях перехода. Поэтому энергию называют функцией состояния системы.

Энтропия тоже является функцией состояния системы, но количество тепла Q = ТΔS, выражающее потерю энергии, связа­но с характером протекающего процесса, так как от него зависит количество тепла, рассеивающегося в систему вследствие пря­мой теплоотдачи системы в окружающую среду и в результате трения. Поэтому-то и реальная работа тоже зависит от характе­ра процесса и никогда не бывает равна теоретической, т.е. из­менению энергии.

Опыт свидетельствует, что все процессы в реальных усло­виях сопровождаются трением и теплообменом с окружающей средой. Это приводит к увеличению энтропии в изолированных системах. В открытых системах энтропия может изменяться под действием внешних сил. Это дало Р. Клаузиусу, В. Томсону и другим исследователям сформулировать новый закон - закон возрастания энтропии (второй закон термодинамики): какие бы изменения ни происходили в реальных изолированных системах, они всегда ведут к увеличению энтропии.

Однако этот закон, основанный на околоземных наблюде­ниях, Р. Клаузиус распространил на всю Вселенную. Он утвер­ждал, что через какой-либо промежуток времени вся энергия, имеющаяся на Земле и в других частях Вселенной, приведет к выравниванию температуры и к полному прекращению превра­щений энергии - к «тепловой смерти Вселенной».

Ограниченность действия закона возрастания энтропии бы­ла доказана австрийским физиком Л. Больцманом в 1871 -­ 1872 гг. Исходя из того, что теплота есть энергия беспорядочного хаотичного движения частиц вещества, он на основе молекулярно-кинетической теории показал, что закон возрастания энтропии не применим к Вселенной, потому что он справедлив лишь для статистических систем, состоящих из большого числа хаотически движущихся (или хаотически расположенных) объектов, поведе­ние которых, определяемое изменением параметров состояния (для газов - это давление, температура, объем), подчиняется законам теории вероятностей. Возрастание энтропии таких сис­тем указывает лишь на наиболее вероятное направление проте­кания процессов. И не исключается возможность маловероятных событий, называемых флуктуациями, когда энтропия уменьша­ется. Этот вывод Больцман сделал на основе прямой связи, которую он установил между энтропией и термодинамической вероятностью состояния рассматриваемой системы, т.е. числом микросостояний - распределений частиц в пространстве по ско­ростям и энергиям, с помощью которых может быть осуществле­но данное макросостояние, определяемое соответствующими параметрами состояния. Больцман привёл зависимость между энтропией S и термодинамической вероят­ностью W к виду S = klnW, где k = 1,380 10-33 Дж/К - постоянная Больцмана.


Поскольку беспорядок всегда вероятнее, чем относитель­ный порядок, то можно записать приведенное выше выражение несколько иначе: S = klnD, где D - количественная мера беспо­рядка в системе. Разбилась тарелка, сгорели дрова в печи и т. д. - энтропия увеличивается и становится максимальной, когда для данной системы наступает максимальный беспорядок. Сле­довательно, с понижением температуры упорядоченность сис­темы растет, соответственно уменьшается энтропия. Это позво­лило немецкому физико-химику В. Нернсту предположить, что с приближением абсолютной температуры к нулю энтропия тоже стремится к нулю. Это выражение известно как «тепловая тео­рема Нернста», или третий закон термодинамики. Основываясь на этом законе, за нулевую точку отсчета энтропии любой систе­мы можно принимать ее максимальную упорядоченность.

Возрастание энтропии соответствует увеличению беспоряд­ка в системе. Тогда второй закон термодинамики формулируется так: «Энтропия замкнутой системы, т.е. системы, которая не об­менивается с окружением теплом и энергией, постоянно возрас­тает». Это означает, что такие системы эволюционируют в сто­рону увеличения в них беспорядка, хаоса и дезорганизации, пока не достигнут точки термодинамического равновесия, в котором всякое производство работы становится невозможным. Энтро­пия в классической термодинамике выступает в качестве на­правления (стрелы) времени. В термодинамических процессах нельзя вернуться к первоначальному состоянию. Термодинамика ввела в физику понятие времени в очень своеобразной форме - форме необрати-мого процесса возрастания энтропии в системе. Чем выше энтропия системы, тем больший временной интервал существования имеет данная система, тем дальше продвину­лась она в своей эволюции. Такое понятие о времени и об эво­люции системы коренным образом отличается от понятия эво­люции Дарвина. В теории Дарвина эволюция направлена на вы­живание более совершенных организмов и усложнение их орга­низации. В термодинамике же эволюция направлена на дезорга­низацию систем. Это противоречие разрешилось только в 60-х гг. ХХ в. с появлением новой, неравновесной термодинамики. Не­равновесная термодинамика опирается на концепцию необрати­мых процессов.

Классическая термодинамика оказалась неспособной ре­шить космологические проблемы для процессов, происходящих во Вселенной. Первую попытку распространить законы термоди­намики на Вселенную сделал Р. Клаузиус (1 822-1 888 гг.), выдви­нувший два постулата:

- энергия Вселенной всегда постоянна;

- энтропия Вселенной всегда возрастает.

Если принять второй постулат, то необходимо признать, что все процессы во Вселенной направлены на достижение термо­динамического равновесия, при котором энтропия максимальна. Это состояние характеризуется максимальной степенью дезор­ганизации и беспорядка. В этом случае никакая полезная работа во Вселенной невозможна, наступит «тепловая смерть». Эти положения, конечно, встретили критику со стороны многих уче­ных и философов. Некоторые из них полагали, что во Вселенной кроме процессов, идущих с возрастанием энтропии, происходят процессы с уменьшением энтропии, которые препятствуют на­ступлению «тепловой смерти». Другие высказывали сомнения в правомерности распространения законов термодинамики с от­дельных систем на Вселенную. Третьи догадывались, что поня­тие изолированной системы не отражает реального характера систем, встречающихся в природе, что изолированные системы составляют только небольшую часть систем, существующих в природе.







Date: 2016-05-15; view: 423; Нарушение авторских прав



mydocx.ru - 2015-2025 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию