Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Круговороты углерода в биосфере





Значение почв в глобальном круговороте углерода

Углерод (С) – активный воздушный и водный мигрант, образующий в биосфере множество органических и минеральных соединений (СО2, СН4, C2H4, С2Н6, СО и др.) и их производных, карбонатов и гидрокарбонатов. Он является главным химическим элементом органического вещества.

Содержание углерода в атмосфере 0,03 % и в настоящее время оно возрастает, достигая 0,035 %, в земной коре – 0,023, в почвах – 2 %; в биосфере: чистых известняках – 12 %, живом веществе – 18, древесине – 50, каменном угле – 80, нефти – 85 % по объему.

Основной источник углерода для живых организмов — это атмосфера Земли, где данный элемент присутствует в виде диоксида углерода (углекислого газа, СО2). Масса этого вещества в атмосфере оценивается цифрой 4 · 1011 тонн.

Еще одним переносчиком углерода является метан. Его в атмосфере тоже немало – около 5 · 109 тонн. Однако из атмосферы происходит утечка метана в стратосферу и далее в космическое пространство. Кроме того, метан расходуется и в результате фотохимических реакций. Продолжительность существования молекулы метана в атмосфере в среднем составляет 5 лет.

Углерод в соединении с водородом и другими элементами является одним из основных компонентов клеток растений и животных. Например, в организме человека он составляет около 18% массы тела.

Углерод в почве

Педосфера является одним из основных резервуаров углерода в биосфере. Почвы участвуют в балансе СО2, СН4, связывая их в различных формах или, наоборот, способствуя их высвобождению в атмосферу, т.е. почвенный покров играет большую роль в газово-атмосферном режиме планеты.

Главный источник углерода в почве – поступление органических остатков, большей частью остатков растений. Разложение их приводит к образованию гумуса и выделению CO2.

Углекислый газ является одной из главных составных частей почвенного воздуха. Почвенный воздух существенно отличается от атмосферного, в нем в 10–100 раз больше СО2. Это связано с тем, что почва поглощает богатый кислородом (21 %) атмосферный воздух и выделяет СО2 (что характерно для процесса дыхания). Поэтому газообмен между почвой и атмосферой называют "дыханием" почвы. По количеству выделенного СО2 можно ориентировочно судить о биологической активности почвы. Чем интенсивнее биологические процессы в почве, тем больше она выделяет СО2. При одинаковых условиях (температуре, влажности и т.п.) чем выше содержание органического вещества в почве, тем больше она выделяет СО2.

Диоксид углерода принимает непосредственное участие в процессах выветривания-почвообразования. Он является важным фактором химического выветривания пород и минералов (например, карбонаты переходят в бикарбонаты и т.п.), влияет на кислотность-щелочность почвенного раствора, увеличивает растворимость фосфатов, усиливает мобилизацию питательных элементов, т.е. переход их в доступное для растений состояние.

Еще один источник углерода – газы, поступающие из глубинных слоев земной коры. Среди глубинных газовых эманации постоянно присутствуют углеводороды, образующиеся в процессе метаморфизации осадочных пород, содержащих рассеянное органическое вещество. Почвенная микрофлора играет весьма важную роль в регулировании выделения из почвы этих газов. Постоянный поток рассеянных углеводородов перехватывается аэробными бактериями, которые окисляют эти газы. Жизнедеятельность аэробных бактерий обеспечивает отсутствие в приземном воздухе таких углеводородов, как пропан и гептан, активно диффундирующих из залежей нефти и газа. Возрастание в почвенном воздухе углеводородов сопровождается увеличением численности бактерий, окисляющих углеводороды. Этот факт используется в качестве признака для поиска газонефтяных месторождений (так называемый микробиологический метод поиска). Таким образом, в педосфере действует своеобразный биогеохимический фильтр — бактериальная система, защищающая атмосферу от поступления рассеянных углеводородов.

Круговороты углерода в биосфере.

Биогеохимические круговороты углерода протекают в пространстве и времени. По длительности (периодичности) и пространственному развитию можно выделить относительно короткие (часы – тысячи лет) биогеохимические круговороты (малый и ландшафтный биогеохимические циклы углерода) и биогеохимический цикл, соизмеримый с геологической историей (большой биогеохимический цикл углерода). В пространственном отношении первые протекают в широком спектре экосистем (ландшафтов) разных уровней, второй – охватывает всю биосферу. Малый и ландшафтный биогеохимические круговороты (циклы) углерода развиваются на фоне большого биогеохимического круговорота (цикла) и являются его составной частью.

В биогеохимических круговоротах углерода особо важная роль принадлежит почве, поскольку она служит важнейшим накопителем органического вещества, представленного органическими остатками и гумусом, которые служат одновременно и аккумулятором, и донором СО2. Педосфера, являясь одной из главных фаз биосферного круговорота, выполняет в отношении углерода следующие функции: резервуара для стока и трансформации атмосферного углерода, ассимилированного при фотосинтезе наземной растительностью; аккумулятора устойчивых соединений углерода в форме гумуса и карбонатов; источника подвижных соединений и бикарбонатов в виде углеродосодержащих газов (прежде всего СО2) и водорастворимых органических соединений и бикарбонатов.

Педогенный углерод, включаясь в воздушные и водные миграционные потоки, связывает биоту, атмосферу, гидросферу, литосферу в единый биосферный биогеохимический круговорот веществ.

Природный ландшафтный биогеохимический круговорот углерода складывается из его абиогенной (физико-химической, механической) и биогенной (фотосинтез, разложение органического вещества и т.д.) миграции. Малый биогеохимический круговорот углерода – динамическая геохимическая система превращения живого вещества, в которой происходит беспрерывный круговорот углерода при участии растений, животных и микроорганизмов. В круговороте участвуют почва (педосфера), растительность и атмосфера, которые объединены механизмом прямой и обратной связи (почва ↔ растительность ↔ атмосфера).

Главные компоненты, обеспечивающие малый биогеохимический круговорот углерода (как и ландшафтный круговорот): продуценты (все зеленые растения, производящие органическое вещество из неорганических составляющих), консументы (все группы животных, паразитарные формы грибов, растения-паразиты) и редуценты (в первую очередь бактерии и грибы, превращающие органические остатки в неорганические вещества). Малый и ландшафтный биогеохимические круговороты углерода являются наземными круговоротами, так как они охватывают экосистемы суши.

Биосферный биогеохимический круговорот углерода – непрекращающийся процесс миграции, распределения, рассеяния и концентрации углерода в системе "верхние слои литосферы – океан – нижняя часть атмосферы", соизмеримый с геологической историей земной коры. Данный круговорот определяется как биологическими, так и геологическими процессами (тектонические поднятия, вулканическая деятельность и др.), в своей совокупности осуществляющими обмен углерода между сушей, океаном и атмосферой.

Распределение СО2 между органическим веществом почвы, растительностью, атмосферой и океаном играет важную роль в формировании теплового баланса планеты, который зависит как от природных (фотосинтез растений, дыхание корней, животных и микроорганизмов, обменная диффузия на поверхности океана, поступление СО2 из глубин земной коры), так и от антропогенно-техногенных (обработка земли, выжигание растительности, сгорание топлива) процессов. Деятельность человека приводит к дополнительному накоплению углерода в атмосфере, которое катализирует парниковый эффект, что может привести к планетарному потеплению климата.

Date: 2016-05-14; view: 11769; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию