Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Основные этапы дыхания и их субклеточная локализация





6.2.3. Гликолитический путь

Этот путь дыхательного обмена состоит из двух фаз – анаэробной (гликолиз) и аэробной (цикл Кребса).

6.2.3.1. Гликолиз

Реакции гликолиза идут в цитозоле и в хлоропластах. В результате гликолиза из одной молекулы глюкозы образуется 2 молекулы пировиноградной кислоты и 4 молекулы АТФ (рис. 6.1). Поскольку макроэргическая связь формируется прямо на окисляемом субстрате, такой процесс образования АТФ получил название субстратного фосфорилирования. Две молекулы АТФ покрывают расход на первоначальное активирование субстрата за счет фосфорилирования. Следовательно, накапливаются 2 молекулы АТФ. Кроме того, в ходе гликолиза восстанавливаются 2 молекулы НАД до НАДН, окисление которых в электронтранспортной цепи митохондрий приводит к синтезу 6 молекул АТФ. Итого образуются 8 молекул АТФ. Образовавшиеся 2 молекулы пировиноградной кислоты вступают в аэробную фазу дыхания.

Рис. 6.1. Этапы гликолиза.

Пунктиром обозначены обходные пути при обращении гликолиза (по В. В. Полевому). 6.2.3.2. Цикл ди- и трикарбоновых кислот (цикл Кребса)

Аэробная фаза дыхания локализована в митохондриях. Пировиноградная кислота окисляется до воды и углекислого газа в дыхательном цикле, получившем название цикла ди- и трикарбоновых кислот или цикла Кребса в честь английского биохимика Г. Кребса, описавшего этот путь (рис 6.2.). В этом цикле окисляется не сама пировиноградная кислота, а ее производное – ацетилкоэнзим А. Он образуется в результате окислительного декарбоксилирования пировиноградной кислоты. Процесс этот состоит из ряда реакций и катализируется сложной мультиферментной системой, состоящей из трех ферментов и пяти коферментов, и названной пируваткарбоксилазой.

Рис. 6.2. Цикл Кребса (цикл ди- и трикарбоновых кислот).

1 – мультиэнзимный комплекс окислительного декарбоксилирования пировиноградной кислоты, 2 – цитратсинтаза, 3 – аконитатгидратаза, 4 – изоцитратдегидрогеназа, 5 – мультиэнзимный комплекс окислительного декарбоксилирования α-кетоглутаровой кислоты, 6 – сукцинатдегидрогеназа, 7 – фумаратгидратаза, 8 – малатдегидрогеназа (по В. В. Полевому).

При окислении одной молекулы пировиноградной кислот образуется 3 молекулы НАДН, 1 молекула НАДФН и 1 молекула ФАДН2, при окислении которых в дыхательной электронтранспортной цепи синтезируется 14 молекул АТФ. Кроме того, 1 молекула АТФ образуется в результате субстратного фосфорилирования.

 

6.2.3.3. Глиоксилатный цикл

Он является модификацией цикла Кребса и локализован не в митохондриях, а в глиоксисомах. В этих органеллах образуется изолимонная кислота, как и в цикле Кребса. Затем она под действием изоцитратлиазы распадается на глиоксиловую и янтарную кислоты. Глиоксиловая кислота реагирует со второй молекулой ацетилкоэнзима А с образованием яблочной кислоты, которая затем окисляется до щавелевоуксусной кислоты. Янтарная кислота выходит из глиоксисомы и превращается в щавелевоуксусную кислоту (рис. 6.3).

Рис. 6.3. Схема глиоксилатного цикла (по В. В. Полевому).

 

В ходе глиоксилатного цикла утилизируются две молекулы ацетилкоэнзима А, образовавшегося при распаде запасных жиров, и образуется одна молекула НАДН.

 

6.2.4. Апотомический путь

Апотомический путь катаболизма гексоз (пентозофосфатный путь окисления глюкозы, гексозомонофосфатный цикл, пентозный шунт) происходит в цитоплазме и при отсутствии света в хлоропластах. Глюкоза фосфорилируется при участии гексокиназы до глюкозо-6-фосфата. Он окисляется глюкозо-6-фосфатдегидрогеназой. При этом образуются восстановленный НАДФН и лактон фосфоглюконовой кислоты. Лактон произвольно или при участии глюконолактозы гидролизуется до 6-фосфоглюконовой кислоты. Она под действием фосфоглюконатдегидрогеназы с коферментом НАДФ декарбоксилируется с образованием восстановленного НАДФН и пятиуглеродного сахара рибулозо-5-фосфата. Отсюда и название апотомический путь (апотомия – усекновение). Последующие реакции представляют цикл регенерации исходного субстрата – глюкозо-6-фосфата. Для прохождения полного цикла необходимы три молекулы глюкозо-6-фосфата. Как видно из рис. 6.4, из 6 молекул глюкозо-6-фосфата образуются 6 молекул СО2 и 6 молекул рибулозо-5-фосфата, из которых восстанавливается 5 молекул глюкозо-6-фосфата. При этом также образуется 12 молекул НАДФН, которые при окислении в дыхательной электронтранспортной цепи могут дать 36 молекул АТФ, что не уступает энергетическому выходу гликолитического пути. Продукты апотомического пути также участвуют в обмене веществ.


Рис. 6.4. Пентозофосфатный цикл.

1 – глюкозо-6-фосфатдегидрогеназа, 2 – глюконолактоназа, 3 - фосфоглюканатдегидрогеназа (декарбоксилирующая), 4 – фосфопентоэпимераза, 5 - фосфопентоизомераза, 6 – транскетолаза, 7 – трансальдолаза, 8 – транскетолаза, 9 - триозофосфатизомераза, 10 – альдолаза, 11 – фосфатаза, 12 – гексозофосфатизомераза (по В. В. Полевому).

 

6.2.5. Прямое окисление сахаров

Некоторые бактерии, грибы и морские водоросли способны окислять нефосфорилированную глюкозу. Сначала a-глюкоза превращается в b-форму при участии мутаротазы. Затем флавинзависимая глюкооксидаза отнимает 2 атома водорода от группировки СНОН 1-го атома углерода глюкозы и переносит их на молекулярный кислород, образуя перекись водорода. Она разлагается каталазой и пероксидазой. Глюкоза при этом превращается в лактон глюконовой кислоты, который неферментативно гидратируется с образованием глюконовой кислоты. Глюконовая кислота после фосфорилирования распадается на пировиноградную кислоту и 3-фосфоглицериновый альдегид.

 

6.2.6. Дыхательная электронтранспортная цепь

и окислительное фосфорилирование

Дыхательная электронтранспортная цепь состоит из переносчиков электронов, которые передают электроны от субстратов на кислород. Расположение переносчиков определяется величиной их окислительно-восстановительного потенциала. Цепь начинается с НАДН, имеющего потенциал –0,32 В, и кончается кислородом с потенциалом +0,82 В. Переносчики расположены по обеим сторонам внутренней мембраны митохондрий и пересекают ее. На внутренней стороне мембраны, расположенной к матриксу митохондрии, два протона и два электрона от НАДН переходят на флавинмононуклеотид и железосерные белки. Флавинмононуклеотид, получив протоны, восстанавливается и переносит их на внешнюю сторону мембраны, где отдает протоны в межмембранное пространство. Железосерные белки, находящиеся внутри мембраны, передают электроны от НАДН окисленному убихинону Q. Он, присоединив еще два протона, диффундирует в мембране к цитохромам. Цитохром b 560 отдает два электрона убихинону, который, присоединив еще два протона из матрикса, передает два электрона цитохрому b 556 и два электрона цитохрому c 1, а протоны выходят в межмембранное пространство. На наружной стороне мембраны цитохром с, получив два электрона от цитохрома c 1, передает их цитохрому а, который переносит их через мембрану на цитохром а 3. Цитохром а 3, связывая кислород, отдает ему электроны. Кислород присоединяет два протона с образованием воды (рис. 6.5).

Рис. 6.5. Локализация электрон- и протонтранспортных реакций во внутренней мембране митохондрий (по В. В. Полевому).

 

Таким образом, транспорт электронов в дыхательной электронтранспортной цепи сопровождается трансмембранным переносом протонов. Возникающая разность потенциалов по обеим сторонам внутренней мембране митохондрий используется для синтеза АТФ (окислительное фосфорилирование), как это было показано в разделе 5.2.2. В результате прохождения двух электронов по цепи образуется 3 молекулы АТФ.

5. Анаэробная фаза дыхания (гликолиз): этапы и энергетический выход.

Гликолиз - процесс анаэробного распада глюкозы, идущий с освобождением энергии, конечным продуктом которого является пировиноградная кислота. Гликолиз - общий начальный этап аэробного дыхания и всех видов брожения. Реакции гликолиза протекают в растворимой части цитоплазмы (цитозоле) и в хлоропластах.


А. Гарден и Л. А. Иванов в 1905 г. независимо показали, что в процессе спиртового брожения наблюдается связывание неорганического фосфата и превращение его в органическую форму. Гарден установил, что глюкоза подвергается анаэробному распаду только после ее фосфорилирования.

Этапы гликолиза:

I. Подготовительный этап — фосфорилирование гексозы и ее расщепление на две фосфотриозы.

II. Первое субстратное фосфорилирование, которое начинается с 3-фосфо-глицеринового альдегида и кончается 3-фосфоглицериновой кислотой. В этом процессе на каждую фосфотриозу синтезируется одна молекула АТФ.

III. Второе субстратное фосфорилирование, при котором 3-фосфо-глицериновая кислота за счет внутримолекулярного окисления отдает фосфат с образованием АТФ.

На активацию глюкозы необходима затрата энергии, что осуществляется в процессе образования фосфорных эфиров глюкозы в ряде подготовительных реакций. Глюкоза (в пиранозной форме) фосфорилируется АТР с участием гексокиназы, превращаясь в глюкозо-6-фосфат, который изомеризуется с помощью глюкозофосфатизомеразы в фруктозо-6-фосфат (фуранозная форма), являющуюся более лабильной формой молекулы гексозы.

Фруктозо-6-фосфат фосфорилируется вторично фосфофруктокиназой с использованием еще одной молекулы АТР. Образующийся фруктозо-1,6-дифосфат - лабильная фуранозная форма с симметрично расположенными фосфатными группами. Обе эти группы несут отрицательный заряд отталкиваясь друг от друга электростатически. Такая структура легко расщепляется альдолазой на две фосфотриозы − на 3-фосфоглицериновый альдегид (3-ФГА) и фосфодиоксиацетон (ФДА).

3-ФГА и ФДА легко превращаются друг в друга с участием триозофосфатизомеразы. Из-за расщепления молекулы гексозы на две триозы гликолиз иногда называют дихотомическим путем окисления глюкозы.

С 3-ФГА начинается II этап гликолиза - первое субстратное фосфорилирование. Фермент дегидрогеназа фосфоглицеринового альдегида (NAD-зависимый SH-фермент) образует с 3-ФГА фермент-субстратный комплекс, в котором происходит окисление субстрата, передача электронов и протонов на NAD + и образование высокоэнергетической связи (т. е. связь с очень высокой свободной энергией гидролиза). Далее осуществляется фосфоролиз этой связи: SH-фермент отщепляется от субстрата, а к остатку карбоксильной группы субстрата присоединяется неорганический фосфат. Высокоэнергетическая фосфатная группа с помощью фосфоглицераткиназы передается на AДФ и образуется АТФ. Так как в данном случае высокоэнергетическая ковалентная связь фосфата формируется прямо на окисляемом субстрате, такой процесс получил название субстратного фосфорилирования. Таким образом, в. результате II этапа гликолиза образуются АТР и восстановленный NADH:


Последний этап гликолиза - второе субстратное фосфорилирование. 3-Фосфоглицериновая кислота с помощью фосфоглицератмутазы превращается в 2-фосфоглицериновую кислоту. Далее фермент енолаза катализирует отщепление воды от 2-фосфоглицериновой кислоты в молекуле, в результате чего образуется фосфоенолпируват − соединение, содержащее высокоэнергетическую фосфатную связь Фосфат фосфоенолпируватв при участии пируваткиназы передается на AДФ и образуется АТР, а енолпируват самопроизвольно переходит в более стабильную форму - пируват − конечный продукт гликолиза.

Энергетический выход гликолиза

При окислении одной молекулы глюкозы образуются две молекулы пировиноградной кислоты. При этом за счет первого и второго субстратного фосфорилирования образуются четыре молекулы АТФ. Однако две молекулы АТФ тратятся на фосфорилирование гексозы на I этапе гликолиза. Таким образом, чистый выход гликолитического субстратного фосфорилирования составляет две молекулы АТФ.

Кроме того, на II этапе гликолиза на каждую из двух молекул фосфотриоз восстанавливается по одной молекуле НАДH. Окисление одной молекулы НАДH в электронтранспортной цепи митохондрий в присутствии О2 сопряжено с синтезом трех молекул АТФ, а в расчете на две триозы (т. е. на одну молекулу глюкозы) - шесть молекул АТФ. Таким образом, всего в процессе гликолиза (при условии последующего окисления НАД H) образуются восемь молекул АТФ. Поскольку свободная энергия гидролиза одной молекулы АТФ во внутриклеточных условиях составляет около 41,868 кДж/моль (10 ккал), восемь молекул АТР дают 335 кДж/моль, или 80 ккал. Таков полный энергетический выход гликолиза в аэробных условиях.

Суммарное уравнение гликолиза:

С6Н12О6 + 2 АТФ + 2 НАД+ + 2Фн + 4АДФ 2 ПВК + 4АТФ + 2НАДН

Значение гликолиза:

1) осуществляет связь между дыхательными субстратами и циклом Кребса;

2) поставляет на нужды клетки две молекулы АТФ и две молекулы НАДH при окислении каждой молекулы глюкозы (в условиях аноксии гликолиз, по-видимому, служит основным источником АТФ в клетке);

3) производит интермедиаты для синтетических процессов в клетке (например, фосфоенолпируват, необходимый для образования фенольных соединений и лигнина);

4) в хлоропластах обеспечивает прямой путь для синтеза АТФ, независимый от поставок НАДФH; кроме того, через гликолиз в хлоропластах запасенный крахмал метаболизируется в триозы, которые затем экспортируются из хлоропласта.







Date: 2016-02-19; view: 1281; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.01 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию