Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Реакция адаптированного сердца на максимальную нагрузку





Максимальная производительность при выполнении предельных нагрузок - таков второй принцип организации функции аппарата кровообращения на стадии устойчивой адаптации к нагрузкам динамического характера (табл. 34).

Здесь же приведем ЭхоКГ-данные для того, чтобы подчеркнуть, что при развитии адаптации по рациональному пути увеличение ММЛЖ идет параллельно с ростом КДО.

Второе обстоятельство, вытекающее из представленных здесь данных, состоит в том, что средние значения ММЛЖ и КДО, хотя и существенно выше у спортсменов, чем у нетренированных лиц, все же не выходят за пределы, обычно принимаемые за верхний порог допустимых колебаний.

Это значит, что у многих спортсменов, находящихся в состоянии устойчивой адаптации к нагрузкам, значения КДО и ММЛЖ не выходят за пределы нормы. Иными словами, адаптирован­ное сердце при небольшой степени выраженности гипертрофии, нередко не определяемой без динамических ЭхоКГ-наблюдений, способно существенно увеличивать функциональные резервы. В связи с этим уместно напомнить слова Ф.З. Меерсона о роли гипертрофии миокарда в адаптации к гиперфункции: «Громадные преимущества, которыми обладает адаптированное сердце, нельзя объяснить простым изменением массы миокарда».

Таблица 34

Показатели морфометрии сердца и функции сердечно-сосудистой системы в покое и при максимальной физической нагрузке у спортсменов и нетренированных лиц*

Показатель Нетренированные лица Спортсмены
Покой Нагрузка Покой Нагрузка
Масса миокарда левого желудочка, М+а, г 125+24   161 ±29  
Конечно-диастолический объем, М±ш, мл 123+20   154 ±35  
Частота сердечных сокращений, уд/мин   170-180   220-240
Артериальное давление, мм.рт.ст.: - систолическое – среднее 120 90   170-180 110   100-115 80-85   180-200 120
Ударный объем левого желудочка, мл 70-90 100-125 70-95 140-190
Минутный объем сердца, л/мин   16-20 4-5 25-35
Работа сердца, кгм/мин 5,8 21,0 6,0 28,5
ИФС напряжения миокарда, мм рт. ст./Смин -г) 70,1   44,2  
Критерий эффективности работы сердца, кгм/мм рт. ст. / мин 10 6,5 6,6 8,3 10,0

* Показатели эффективности сердца, заимствованные из работы Ф.З. Меерсона и соавт. (1978), получены при выполнении испытуемыми нагрузки 1200 кгм/мин в течение 3 мин.

 

Увеличение функциональных резервов адаптированного сердца, как видно из табл. 35, проявляется более выраженным, чем у нетренированных, увеличением ЧСС, подъемом артериального давления и, что особенно важно, почти 2-кратным увеличением ударного объема крови.

Эти сдвиги обеспечивают существенное, по сравнению с нетренированными, увеличение МОК, работы сердца и потребления кислорода в единицу времени.

На оценке различной способности аппарата кровообращения к увеличению МОК у тренированных и нетренированных лиц следует остановиться подробнее. Из табл. 34 видно, что сердце нетренированного человека в ответ на максимальную нагрузку способно увеличить МОК в 3-4 раза. Это увеличение достигается за счет увеличения ЧСС в 2-2,5 раза и возрастании УО на 30-50%. Физиологическое спортивное сердце способно обеспечивать увеличение МОК в 5-7 раз по сравнению с уровнем покоя. Такое увеличение обеспечивается приростом ЧСС в 3-4 раза и значительно большим увеличением УО - в 2-2,5 раза.

Различия способностей адаптированного и неадаптированного сердца к выполнению работы вытекают из приведенных в табл. 35 результатов сопоставления показателей эффективности работы сердца, проведенного Ф.З. Меерсоном (1978). Помимо определения внешней работы, автор предложил показатели интенсивности функционирования структур напряжения (ИФСн), рассчитываемый как частное от деления ДП на ММЛЖ, и критерий эффективности (КЭ) - отношение величины внешней работы к ДП.

Из таблицы видно, что величины ИФСН и КЭ у спортсменов и неспортсменов существенно различаются, что особенно заметно при выполнении большой физической нагрузки.

Величина ИФСн у спортсменов оказалась существенно ниже, а КЭ выше, чем у нетренированных лиц, что служит убедительным подтверждением экономизации функции сердца при тренировках динамического характера.

Все приведенные данные свидетельствуют о том, что максимальная мощность и эффективность работы адаптированного сердца обеспечивается за счет умеренных изменений структуры - тоногенная дилатация и гипертрофия - и, что самое главное, за счет совершенствования функции аппарата кровообращения, проявляющегося резким увеличением способности миокарда к выполнению механической работы.


Однако существуют широкие индивидуальные различия путей адаптации аппарата кровообращения к нагрузкам, проявляющиеся значительными колебаниями морфометрических характеристик адаптированного сердца и гемодинамических ответов на нагрузку.

В частности, В.Л. Карпман и Б.Г. Любина (1982) описали 3 типа реакций УО на физическую нагрузку:

- при 1-м типе, который авторы считают оптимальным, наблюдается быстрый рост УО от исходного до максимального уровня;

- при 2-м типе реакции отмечается медленное нарастание УО в процессе выполнения нагрузки;

- при 3-м типе - временное увеличение УО сменяется постепенным его снижением.

При выполнении нагрузок в горизонтальном положении последняя реакция может наблюдаться и в норме. При вертикальном положении тела 3-й тип реакции следует, по мнению авторов, расценивать как неблагоприятный.

Исследования последних лет показали, что реакция аппарата кровообращения на нагрузку может быть в известной мере прогнозирована, исходя из результатов обследования в условиях покоя, если учитывать тип кровообращения. В упомянутом ранее исследовании А.Г. Дембо и соавт. (1986) спортсмены с различными ТК выполняли дозированную нагрузку на велоэргометре из расчета 3,3 Вт/кг в течение 5 мин. Динамика СИ при пробе с физической нагрузкой в группах спортсменов с разными ТК. 5-минутная одноступенчатая нагрузка выполнялась на велоэргометре и дозировалась из расчета 1 Вт/кг массы тела. Видно, что у спортсменов с исходно выраженной экономизацией функции в состоянии покоя с ГТК ответ на стандартную нагрузку также был самый экономичный. При этом величина СИ возросла в 4,1 раза, в то время как при ГрТК гемодинамический ответ на нагрузку был наиболее выражен, а степень увеличения СИ существенно меньшей (в 3,1 раза).

Кроме того, увеличение СИ при нагрузке у спортсменов с исходно различными ТК происходит различными путями.

Как видно из табл. 35, при ГТК и ГрТК значения УО на высоте нагрузки практически одинаковы и достижение необходимого уровня МОК идет у спортсменов с ГрТК по энергетически более расточительному пути - преимущественному приросту ЧСС и артериального давления при недостаточном повышении периферического сопротивления.

Более экономичный режим функционирования системы кровообращения имеет место при ГТК, что подтверждается самыми низкими значениями двойного произведения состояния кровообращения (ДП) у спортсменов этой группы. Напротив, спортсмены с ГрТК имеют наибольшее значение ДП, что подтверждает наибольшую энергетическую стоимость выполняемой работы. Приведенные данные дают основание считать, что выявление ГрТК у спортсменов, развивающих выносливость, следует оценивать как свидетельство напряжения регуляторных систем или нарушения восстановительных процессов после тренировочных нагрузок.

Таблица 35

Основные показатели гемодинамики (М+т) у спортсменов с различными типами кровообращения во время дозированной физической нагрузки

Показатель Тип кровообращения Достоверность различия
гипокинетический эукинетический гиперкинетический 1-2 1-3 2-3
АДсист, мм.рт.ст. 169+10 178+25 181+16 - + -
АДдиастол, мм.рт.ст. СТ. 66 ±17 60+18 61+13 - - -
ЧСС, уд/мин 136+19 148+16 150+12 + + -
Ударный объем левого желудочка, мл 148+23 143±22 151+25 - - -
Удельное периферическое сопротивление сосудов, усл. ед. 9,9 ±0,21 9,5 ±0,22 8,9+0,23 - + -
Двойное произведение, ЧССхАДсист, 10~г 230+12 263+10 271+24 + + -
ЧСС Аде, 102            

 


Сегодня еще не вполне ясно, можно ли рассматривать ГрТК в качестве одного из возможных проявлений ДМФП, как это предлагают делать некоторые авторы (Некрутов М.Л., Душанин С.А., 1977). Однако не подлежит сомнению, что выявление такого ТК у спортсмена, тренирующего выносливость, требует пристального внимания со стороны спортивного врача и проведения углубленного обследования. Остается не изученным вопрос о взаимосвязи ТК, выявляемого спортсменами в состоянии покоя, и типами реакции УО на физическую нагрузку по В.Л. Карпману и Б.Г. Любиной (1982). Можно лишь предполагать, что у лиц с ГрТК, как наименее экономичным типом функционирования аппарата кровообращения, чаще наблюдается 2-й или 3-й тип реакции УО. Лишь дальнейшие углубленные исследования ТК у спортсменов будут способствовать решению этого вопроса.

Весьма перспективным направлением в изучении особенностей реакции аппарата кровообращения на нагрузку являются допплерэхокардиография (ДЭ-ХОКГ) и стресс-ДЭХОКГ, позволяющия оценить диастолическую функцию сердца. Первые исследования, выполненные в этом направлении, показывают, что регулярные физические тренировки способствуют включению дополнительного механизма диастолического наполнения, основную роль в котором играет систола предсердий (Ко-зупица Г.С. и др., 1992).

 







Date: 2015-12-13; view: 568; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.01 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию