Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Абстрактные предусловия





 

Правило ослабления предусловий может оказаться чересчур жестким в случае, когда наследник понижает уровень абстракции, характерный для его предка. К счастью, есть легкий обходной путь, полностью согласующийся с теорией.

Типичным примером этого является порождение BOUNDED_STACK от универсального класса стека (STACK). Процедура занесения в стек элемента (put) в порожденном классе имеет предусловие count <= capacity, где count - текущее число элементов в стеке, capacity - физическая емкость накопителя.

В общем понятии стека нет понятия емкости. Поэтому создается впечатление, будто при переходе к BOUNDED_STACK предусловие приходится усилить (от бесконечной емкости перейти к конечной). Как выстроить структуру наследования, не нарушая правило Утверждения Переобъявления?

Ответ становится очевиден, если мы ближе познакомимся с требованиями к клиенту. То, что нужно сохранить или ослабить, не обязательно является конкретным предусловием, как оно видится в реализации поставщика (реализация это его забота), но касается предусловия, как оно видится клиенту. Пусть процедура put класса STACK имеет вид:

 

put (x: G) is

-- Поместить x на вершину.

require

not full

deferred

ensure

...

end

 

 

где функция full всегда возвращает ложное значение, а значит, стек по умолчанию никогда не бывает полным.

 

full: BOOLEAN is

-- Заполнено ли представление стека?

-- (По умолчанию, нет)

do Result:= False end

 

 

Тогда в BOUNDED_STACK достаточно переопределить full:

 

full: BOOLEAN is

-- Заполнено ли представление стека?

-- (Да, если число элементов равно емкости стека)

do Result:= (count = capacity) end

 

 

Предусловие, такое как not full, включающее свойство, которое переопределяется потомками, называется абстрактным (abstract) предусловием.

Такое использование абстрактных предусловий для соблюдения правила Утверждения Переобъявления может показаться обманом, однако это не так. Несмотря на то, что конкретное предусловие фактически становится более сильным, абстрактное предусловие не меняется. Важно не то, как реализуется утверждение, а то, как оно представлено клиентам в интерфейсе класса (краткой или плоско-краткой форме). Предваренный условием вызов

 

if not s.full then s.put (a) end

 

 

будет корректен независимо от вида STACK, присоединенного к s.

Впрочем, есть доля справедливой критики этого подхода, так как он вступает в противоречие с принципом Открыт-Закрыт. При проектировании класса STACK мы должны предвидеть ограниченную емкость отдельных стеков. Не проявив должной предусмотрительности, нам придется вернуться к проектированию STACK и изменить интерфейс класса. Это неизбежно. Из следующих двух свойств только одно должно выполняться:

[x]. ограниченный стек является стеком;

[x]. в стек всегда можно добавить еще один элемент.

Если предпочесть первое свойство и допускать порождение BOUNDED_STACK от STACK, мы должны согласиться с тем, что общее понятие стека включает предположение о невозможности в ряде случаев выполнить операцию put, абстрактно выраженное запросом full.

 

Было бы ошибкой включить в виде постусловия подпрограммы full в классе STACK выражение Result = False или (придерживаясь рекомендуемого стиля, эквивалентный ему) инвариант not full. Это - случай излишней спецификации, ограничивающей свободу реализации компонентов потомками класса.

 







Date: 2015-12-13; view: 377; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию