Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Нанотрубка





Углеродные нанотрубки — это протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров состоящие из одной или нескольких свёрнутых в трубку графеновых плоскостей и заканчивающиеся обычно полусферической головкой, которая может рассматриваться как половина молекулы фуллерена

Идеальная нанотрубка представляет собой свёрнутую в цилиндр графитовую плоскость, то есть поверхность, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода. Результат такой операции зависит от угла ориентации графеновой плоскости относительно оси нанотрубки. Угол ориентации, в свою очередь, задаёт хиральность нанотрубки, которая определяет, в частности, её электрические характеристики

Развитие методов синтеза углеродных нанотрубок (УНТ) шло по пути снижения температур синтеза. После создания технологии получения фуллеренов было обнаружено, что при электродуговом испарении графитовых электродов наряду с образованием фуллеренов образуются протяженные цилиндрические структуры. Микроскопист Сумио Ииджима, используя просвечивающий электронный микроскоп (ПЭМ), первым идентифицировал эти структуры как нанотрубки. К высокотемпературным методам получения УНТ относится электродуговой метод. Если испарить графитовый стержень (анод) в электрической дуге, то на противоположном электроде (катоде) образуется жесткий углеродный нарост (депозит) в мягкой сердцевине которого содержатся много стенные УНТ с диаметром 15-20 нм и длиной более 1 мкм.

Формирование УНТ из фуллереновой сажи при высокотемпературном тепловом воздействии на сажу впервые наблюдали Оксфордская и Швейцарская группы. Установка для электродугового синтеза металлоемка, энергозатратна, но универсальна для получения различных типов углеродных наноматериалов. Существенной проблемой является неравновесность процесса при горении дуги. Электродуговой метод в свое время пришел на смену метода лазерного испарения (абляции) лучом лазера. Установка для абляции представляет собой обычную печь с резистивным нагревом, дающую температуру 1200°С. Чтобы получить в ней более высокие температуры, достаточно поместить в печь мишень из углерода и направить на нее лазерный луч, попеременно сканируя всю поверхность мишени. Так группа Смолли, используя дорогостоящие установки с коротко импульсным лазером, получила в 1995 г. нанотрубки, «значительно упростив» технологию их синтеза

Однако, выход УНТ оставался низким. Введение в графит небольших добавок никеля и кобальта (по 0.5 ат.%) позволило увеличить выход УНТ до 70-90%. С этого момента начался новый этап в представлении о механизме образования нанотрубок. Стало очевидным, что металл является катализатором роста. Так появились первые работы по получению нанотрубок низкотемпературным методом — методом каталитического пиролиза углеводородов (CVD), где в качестве катализатора использовались частицы металла группы железа. Один из вариантов установки по получению нанотрубок и нановолокон CVD методом представляет собой реактор, в который подается инертный газ-носитель, уносящий катализатор и углеводород в зону высоких температур.

Упрощенно механизм роста УНТ заключается в следующем. Углерод, образующийся при термическом разложении углеводорода, растворяется в нано частице металла. При достижении высокой концентрации углерода в частице на одной из граней частицы-катализатора происходит энергетически выгодное «выделение» избыточного углерода в виде искаженной полуфуллереновой шапочки. Так зарождается нанотрубка. Разложившийся углерод продолжает поступать в частицу катализатора, и для сброса избытка его концентрации в расплаве нужно постоянно избавляться от него. Поднимающаяся полусфера (полуфуллерен) с поверхности расплава увлекает за собой растворенный избыточный углерод, атомы которого вне расплава образуют связь С-С, представляющую собой цилиндрический каркас-нано трубку.

• Механические применения: сверхпрочные нити, композитные материалы, нановесы

• Применения в микроэлектронике: транзисторы, нанопровода, прозрачные проводящие поверхности, топливные элементы.

• Для создания соединений между биологическими нейтронами и электронными устройствами в новейших нейрокомпьютерных разработках.

• Капиллярные применения: капсулы для активных молекул, хранение металлов и газов, нанопипетки.

• Оптические применения: дисплеи, светодиоды

• Трос для космического лифта: нанотрубки, теоретически, могут держать огромный вес — до тонны на квадратный миллиметр.

• Листы из углеродных нанотрубок можно использовать в качестве плоских прозрачных громкоговорителей.

• Искусственные мышцы. Путем введения парафина в скрученную нить из нанотрубок международной команде ученых из университета Техаса удалось создать искусственную мышцу, которая в 85 раз сильнее человеческой

Date: 2015-12-13; view: 301; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию