![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Плоский изгиб балок
Плоский изгиб балок является одним из наиболее опасных случаев нагружения деталей машин и элементов сооружений, когда силовая плоскость проходит через одну из главных центральных осей инерции сечения (см. гл. 1). При плоском поперечном изгибе (в дальнейшем просто “изгибе”) в сечении балки возникают два внутренних усилия: поперечная сила Поперечная сила в произвольном сечении балки равна алгебраической сумме проекций на вертикальную ось Y всех внешних нагрузок, расположенных по одну сторону от рассматриваемого сечения, т. е.
При вычислениях используют следующее правило знаков (рис. 3.1): Рис. 3.1. Правило знаков для поперечной силы внешняя нагрузка, вращающая отсечённый элемент балки (шарнирно закреплённый в центре тяжести сечения Изгибающий момент в произвольном сечении балки равен алгебраической сумме моментов относительно горизонтальной оси X всех внешних нагрузок, расположенных по одну сторону от рассматриваемого сечения, т. е.
При вычислениях используют следующее правило знаков (рис. 3.2): Рис. 3.2. Правило знаков для изгибающего момента внешняя нагрузка, искривляющая отсечённый элемент балки (жёстко защемленный в рассматриваемом сечении i–i) выпуклостью вниз, создаёт положительный изгибающий момент, а выпуклостью вверх –отрицательный. С целью определения наиболее опасных сечений строят эпюры поперечных сил и изгибающих моментов по длине балки. Для проверки правильности построения эпюр используют третий закон Ньютона (действие равно противодействию) и дифференциальные зависимости между внутренними усилиями Q, M и интенсивностью распределённой нагрузки q. Ньютоновские проверки выполняют для каждой границы между грузовыми участками, где наблюдается изменение характера нагружения, например приложены сила или момент, начинается или заканчивается распределённая нагрузка и др. Эти проверки заключаются в выполнении условий
где Дифференциальные проверки должны выполняться для всех сечений балки. Обычно они записываются в виде
где d – дифференциал; z – абсцисса сечения (аргумент); Полезно помнить, что геометрический смысл первой производной – это тангенс угла наклона касательной к графику функции, а второй производной – кривизна функции в рассматриваемой точке. Угол наклона положителен, если он образован поворотом оси Z против часовой стрелки; кривизна положительна, если имеет выпуклость внизу; распределённая нагрузка положительна, если направлена вверх. Третий вид проверок – это интегральные зависимости между функциями
Здесь Полезно помнить, что приращение функции – это число, а интегралы в правой части – это площади, ограниченные графиком функции и осью Z в пределах грузового участка. При изгибе балки в точках её поперечных сечений появляются два вида напряжений: нормальные где “–” в правой части объясняется тем, что при положительных значениях М и y появляются сжимающие напряжения Касательные напряжения имеют второстепенное значение при расчётах балок на прочность, так как сравнительно редко являются причиной разрушения. Эти напряжения зависят от поперечной силы и определяются по формуле Д.И. Журавского:
где С учётом вышесказанного расчёт балок выполняют, исходя из условия прочности по нормальным напряжениям
где При проектировочном расчёте балок на прочность, когда известны внешние нагрузки, типы опор, длина и материал балки, строят эпюру изгибающих моментов
Варианты и исходные данные домашнего задания № 3
На рис. 3.3, а изображена ось балки длиной
Рис. 3.3. Геометрическая ось балки, опоры и нагрузки
Таблица 3.1 Точки опирания и приложения нагрузок
а – первая цифра шифра; б – вторая цифра шифра.
Таблица 3.2 Числовые значения внешних нагрузок
Примечание. Знак “–” при числовых значениях нагрузок означает, что их направления необходимо показывать на схеме балки противоположно тем, которые изображены на рис. 3.1, б. В дальнейших расчётах значения нагрузок следует принимать по модулю, т. е. положительными. Date: 2015-12-13; view: 396; Нарушение авторских прав |