Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Проверить значимость модели (уравнение регрессии) в целом с помощью критерия Фишера. Сформулировать выводы





Для начала найдём коэффициент детерминации:

,

Где TSS = - полная сумма квадратов,

-общая сумма квадратов;

RSS = - сумма квадратов, обусловленная регрессией,

-объясненная сумма квадратов (сумма квадратов регрессии).

ESS = - остаточная сумма квадратов.

-остаточная сумма квадратов (сумма квадратов остатков)

= 15504,60+3457,033=18862,64

Так как RSS>>ESS, то остатки регрессии невелики.

Можно сделать предварительный вывод о том, что разброс значений относительно линии регрессии также невелик, и уравнение достаточно точно описывает наблюдаемые данные.

Коэффициент детерминации показывает, насколько модель объясняет исходные данные, следовательно, исходя из полученного коэффициента, можно отметить, что наша модель объясняет исходные данные о наличии зависимости количества выпитого пива от температуры на 82%.

В данном случае нельзя точно утверждать, что такое значение коэффициента детерминации означает достаточную пригодность уравнения регрессии, поэтому проверим его на значимость по критерию Фишера на 5% -ном уровне значимости.

Проверим значимость модели в целом по F - критерию:

Чтобы проверить значимость модели, необходимо проверить гипотезу:

Найдем F-статистику (Критерий Фишера) по формуле:

Чис­ло степеней свободы определяется также просто:

k1=nl - 1 для первой выборки (т.е. для той выборки, величина дисперсии которой больше) и k2=n2 - 1 для второй выборки.

 

Из таблицы находим значение:

Если , то гипотеза отвергается с вероятностью 0,95.

В нашем случае 102,495 > 4,28, значит, гипотеза отвергается с вероятностью 95%.

Из проведенного анализа можно сделать вывод, что наша модель значима, и связь между количеством выпитого пива и температурой воздуха можно описать уравнением:

Y= - 193,558+7,495x

 

Выбрать прогнозную точку Xп в стороне от основного массива исходных данных. Используя уравнение регрессии, выполнить точечный и интервальный прогнозы величины Y в точке X п. Проанализировать полученные результаты.

Выберем в качестве прогнозной точки значение xп=42°С. Тогда прогнозируемое значение количества выпитого Робинзоном пива будет равно:

yп = - 193,558+7,495 *42= 121,23.

Это значит, что при температуре 420С Робинзон должен выпить 121,23% от объема фляги. Выполним интервальный прогноз.

Для оценки точности прогноза необходимо вычислить стандартную ошибку прогноза по формуле:

= 7,462; tкр (0,05; 23) =2,069

Границы доверительного интервала найдем по формуле:

Получим [121,23-2,069*7,462; 121,23+2,069*7,462].

доверительный интервал для Y: [105,79; 136,67]

То есть при температуре 420С количество выпитого пива с вероятностью 95% колеблется в пределах от 105,79% до 136,67%.

Точечное прогнозирование показывает, что если температура будет равна 42 градусам, то Робинзону может быть недостаточно одной целой фляги пива для утоления жажды, т.к. объём выпитого пива выходит за рамки 100%.

.

По результатам корреляционного анализа мы выбрали наиболее тесно связанные показатели Y (количество выпитого пива) и Х (температура).

Полагая, что связь между ними может быть описана линейной функцией, составили уравнение парной регрессии, используя для оценивания неизвестных параметров МНК, получили, что Y = - 193,558+7,495x.

С изменением регрессора (температуры) на 1 единицу, отклик (кол-во выпитого пива) в среднем изменяется на 7,495 % от объема фляги).

Проведя анализ значимости параметров и самой модели, можно сделать вывод, что оба параметра (θ0 и θ1) значимы, и модель в целом также значима, то есть, верна. Следовательно, эту модель мы можем использовать для дальнейшего прогнозирования. Нанеся на координатную плоскость исходные данные, линию регрессии, 95% -ный доверительный интервал, мы видим, что большинство значений исходных данных попадает или находится в непосредственной близости от доверительного интервала, что также подтверждает наше предположение о наличии тесной линейной связи между количеством выпитого пива и температурой воздуха в день охоты. Также, исходя из графика, можно заметить, что, чем ближе значение температуры к среднему, тем выше степень точности наших прогнозов.

Варианты задач для самостоятельного решения

Постройте регрессионную модель (линейную) для исходных данных приведенных в таблице 1.

Графический анализ – построение диаграммы рассеяния, по которой определяется форма регрессионной модели.

 

Вычислить параметры а и b уравнения парной линейной регрессии


 

Проверить статистическую значимость коэффициента регрессии

 

Построить границы 95-процентного доверительного интервала для коэффициента регрессии

 







Date: 2015-12-12; view: 656; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию