Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Ядерная энергия связи





 

Ядра состоят из протонов и нейтронов, которые удерживаются вместе сильным взаимодействием. Но масса ядра всегда меньше суммарной массы протонов и нейтронов, из которых оно состоит. Разница служит мерой ядерной энергии связи, которая удерживает частицы в ядре. Энергию связи можно вычислить по формуле Эйнштейна Δmc2, где Δm – разница между массой ядра и суммой масс входящих в него частицу – скорость света.

Именно выделение этой потенциальной энергии порождает разрушительную мощь ядерных устройств.

 

После своих пионерских статей 1905 г. Эйнштейн завоевал уважение в научном сообществе. Но только в 1909 г. ему предложили место в Цюрихском университете, что позволило расстаться с Швейцарским патентным бюро. Два года спустя он перебрался в Немецкий университет в Праге, но в 1912 г. вернулся в Цюрих, на это раз – в ЕТН. Несмотря на антисемитизм, охвативший тогда большую часть Европы и проникший даже в университеты, Эйнштейн теперь очень высоко котировался как ученый. К нему поступили предложения из Вены и Утрехта, но он решил отдать предпочтение должности исследователя Прусской академии наук в Берлине, поскольку она освобождала его от преподавательских обязанностей. Он переехал в Берлин в апреле 1914 г., и вскоре к нему присоединились жена и двое сыновей. Но семейная жизнь не заладилась, и довольно быстро семья ученого вернулась в Цюрих. Несмотря на его эпизодические визиты к жене, они в конце концов развелись.

Эйнштейн позднее женился на своей кузине Эльзе, которая жила в Берлине. Однако все годы Первой мировой войны он оставался свободным от семейных уз, отчего, возможно, этот период его жизни оказался таким плодотворным для науки.

Хотя теория относительности полностью соответствует законам, которые управляют электричеством и магнетизмом, она несовместима с ньютоновским законом тяготения. Этот последний говорит, что если изменить распределение вещества в одном месте пространства, то изменения гравитационного поля мгновенно проявятся повсюду во Вселенной. Это не только означает возможность передавать сигналы со сверхсветовой скоростью (что запрещено теорией относительности), но – для придания смысла понятию «мгновенно» – требует также существования абсолютного или универсального времени, от которого теория относительности отказалась в пользу индивидуального времени.

Эйнштейн знал об этой трудности с 1907 г., когда еще работал в бернском патентном бюро, но только в 1911 г. в Праге начал серьезно думать над проблемой. Он понял, что есть тесная связь между ускорением и гравитационным полем. Находясь в небольшом замкнутом помещении, например в лифте, нельзя сказать, покоится ли оно в земном гравитационном поле или ускоряется ракетой в открытом космосе. (Конечно, это было задолго до появления сериала «Звездный путь»[2], и Эйнштейн скорее представлял себе людей в лифте, чем в космическом корабле.) Но в лифте нельзя долго ускоряться или свободно падать: все быстро закончится катастрофой (рис. 1.9).

 

 

Рис. 1.9

 

Наблюдатель в контейнере не ощущает разницы между пребыванием в неподвижном лифте на Земле (а) и перемещением в ракете, движущейся с ускорением в свободном пространстве (b). Отключение двигателя ракеты (с) ощущалось бы точно так же, как свободное падение лифта на дно шахты (d).

 

Если бы Земля была плоской, мы могли бы с равным успехом приписать падение яблока на голову Ньютона как тяготению, так и тому, что Ньютон вместе с поверхностью Земли ускоренно двигался вверх (рис. 1.10). Такой эквивалентности между ускорением и гравитацией не наблюдается, однако, на круглой Земле: люди на противоположных сторонах земною шара должны были бы ускоряться в разных направлениях, оставаясь при этом на постоянном расстоянии друг от друга (рис. 1.11).

 

Рис. 1.11

 

Но ко времени возвращения в Цюрих в 1912 г. в голове Эйнштейна уже сложилось понимание, что эквивалентность должна работать, если пространство‑время окажется искривленным, а не плоским, как считалось в прошлом. Идея состояла в том, что масса и энергия должны изгибать пространство‑время, но как именно – это еше предстояло определить. Такие объекты, как яблоки или планеты, должны стремиться к тому, чтобы двигаться сквозь пространство‑время по прямым линиям, но их пути выглядят искривленными гравитационным полем, потому что искривлено само пространство‑время (рис. 1.12).


 

Рис. 1.12 Искривление пространства‑времени

 

Ускорение и гравитация могут быть эквивалентны, только если массивное тело искривляет пространство‑время, тем самым изгибая траектории объектов в своей окрестности.

 

С помощью своего друга Марселя Гроссмана Эйнштейн изучил теорию искривленных пространств и поверхностей, которая была разработана ранее Георгом Фридрихом Риманом. Но Риман думал только об искривленном пространстве. Эйнштейн понял, что искривляется пространство‑время. В 1913 г. Эйнштейн и Гроссман совместно написали статью, в которой выдвинули идею, что сила, о которой мы думаем как о гравитации, – это лишь проявление того, что пространство‑время искривлено. Однако из‑за ошибки Эйнштейна (и ему, как всем нам, свойственно было ошибаться), им не удалось найти уравнения, которые связывают кривизну пространства‑времени с находящимися в нем массой и энергией. Эйнштейн продолжил работать над проблемой в Берлине, где его не беспокоили домашние дела и практически не затронула война, и в итоге нашел правильные уравнения в ноябре 1915 г. Во время поездки в Гёттингенский университет летом 1915 г. он обсудил свои идеи с математиком Давидом Гильбертом, и тот независимо вывел те же самые уравнения на несколько дней раньше Эйнштейна. Тем не менее сам Гильберт признавал, что честь создания новой теории принадлежит Эйнштейну. Это была идея последнего – связать гравитацию с искривлением пространства‑времени. И надо отдать должное цивилизованности тогдашнего германского государства, за то что научные дискуссии и обмен идеями могли без помех продолжаться даже в военное время. Какой контраст с эпохой нацизма, которая наступила двадцатью годами позже!

Новая теория искривленного пространства‑времени получила название общей теории относительности, чтобы отличать ее от первоначальной теории, которая не включала гравитацию и ныне известна как специальная теория относительности. Она получила очень эффектное подтверждение в 1919 г., когда британская экспедиция наблюдала в Западной Африке незначительное изгибание света звезды, проходящего вблизи Солнца во время затмения (рис. 1.13). Это было прямым доказательством того, что пространство и время искривляются, и стимулировало самый глубокий пересмотр представлений о Вселенной, в которой мы живем, с тех пор как Евклид написал свои «Начала» около 300 г. н. э.

 

 

Рис. 1.13. Искривление света

 

Свет звезды проходит вблизи Солнца и отклоняется, поскольку Солнце искривляет пространство‑время (а). Это приводит к небольшому смещению видимого положения звезды при наблюдении с Земли (b). Увидеть такое можно во время затмения.

 

Общая теория относительности Эйнштейна превратила пространство и время из пассивного фона, на котором разворачиваются события, в активных участников динамических процессов во Вселенной. И отсюда выросла великая задача, которая остается на переднем крае физики XXI века. Вселенная заполнена материей, и эта материя искривляет пространство‑время таким образом, что тела падают друг на друга. Эйнштейн обнаружил, что его уравнения не имеют решения, которое описывало бы статическую, неизменную во времени Вселенную. Вместо того чтобы отказаться от такой вечной Вселенной, в которую он верил наряду с большинством других людей, Эйнштейн подправил свои уравнения, добавив в них член, названный космологической постоянной, который искривлял пространство противоположным образом, так чтобы тела разлетались. Отталкивающий эффект космологической постоянной мог сбалансировать эффект притяжения материи, тем самым позволяя получить статическое решение для Вселенной. Это была одна из величайших упущенных возможностей в теоретической физике. Если бы Эйнштейн сохранил первоначальные уравнения, он мог бы предсказать, что Вселенная должна либо расширяться, либо сжиматься. На деле же возможность меняющейся во времени Вселенной не рассматривалась всерьез вплоть до наблюдений, выполненных в 1920‑х гг. на 100‑дюймовом телескопе обсерватории Маунт‑Вилсон.


Эти наблюдения обнаружили, что чем дальше находится другая галактика, тем быстрее она от нас удаляется. Вселенная расширяется таким образом, что расстояние между любыми двумя галактиками со временем постоянно увеличивается (рис. 1.14). Это открытие сделало ненужной космологическую постоянную, введенную, чтобы обеспечивать статическое решение для Вселенной. Позднее Эйнштейн называл космологическую постоянную величайшей ошибкой в своей жизни. Однако, похоже, она вовсе не была ошибкой: недавние наблюдения, описанные в главе 3, говорят о том, что в действительности космологическая постоянная может иметь небольшое, отличное от нуля значение.

 

 

Рис. 1.14

 

Наблюдения за галактиками говорят о том, что Вселенная расширяется: расстояния между почти любой парой галактик увеличивается.

 

Общая теория относительности радикально изменила содержание дискуссий о происхождении и судьбе Вселенной. Статическая Вселенная может существовать вечно или быть создана в ее нынешнем виде некоторое время назад. Однако если галактики сейчас разбегаются, это означает, что в прошлом они должны были располагаться ближе. Около 15 миллиардов лет назад они буквально сидели друг на друге и плотность была очень высокой. Это было состояние «первичного атома», как назвал его католический священник Жорж Аеметр, первым начавший изучать рождение Вселенной, которое мы теперь именуем Большим взрывом.

Эйнштейн, видимо, никогда не воспринимал Большой взрыв всерьез. Он, похоже, считал, что простая модель однородного расширения Вселенной должна нарушиться, если попробовать проследить движения галактик назад во времени, и что небольшие боковые скорости галактик приведут к тому, что они не столкнутся. Он считал, что ранее Вселенная могла находиться в фазе сжатия, но еще при весьма умеренной плотности испытать отражение и перейти к нынешнему расширению. Однако, как нам теперь известно, для того чтобы ядерные реакции в ранней Вселенной смогли наработать то количество легких элементов, которое мы наблюдаем, плотность должна была достигать по крайней мере тонны на кубический сантиметр, а температура – десяти миллиардов градусов. Более того, наблюдения космического микроволнового фона указывают на то, что плотность, вероятно, достигала триллиона триллионов триллионов триллионов триллионов триллионов (1 с 72 нулями) тонн на кубический сантиметр.


 

Стодюймовый телескоп Хукера в обсерватории Маунт‑Вилсон.

 

Нам также известно, что общая теория относительности Эйнштейна не позволяет Вселенной отразиться, перейдя из фазы сжатия в фазу расширения. Как будет рассказано в главе 2, мы с Роджером Пенроузом смогли показать: из общей теории относительности вытекает, что Вселенная началась с Большого взрыва. Так что теория Эйнштейна действительно предсказывает, что время имеет начало, хотя ему самому эта идея никогда не нравилась.

Еще менее охотно Эйнштейн признавал предсказание общей теории относительности о том, что для массивных звезд время должно прекращать свое течение, когда их жизнь заканчивается и они не могут больше генерировать достаточно тепла для сдерживания собственной силы притяжения, которая стремится уменьшить их размеры. Эйнштейн полагал, что такие звезды должны приходить к равновесному конечному состоянию, но теперь мы знаем, что для звезд, вдвое превышающих по массе Солнце, подобного конечного состояния не существует. Такие звезды будут сжиматься, пока не станут черными дырами областями пространства‑времени, настолько искривленными, что свет не может выйти из них наружу (рис. 1.15).

 

 

Рис. 1.15

 

Когда массивная звезда исчерпывает свои запасы ядерного топлива, она теряет тепло и сжимается. Искривление пространства‑времени становится столь сильным, что возникает черная дыра, из которой свет не может вырваться. Внутри черной дыры наступает конец времени.

 

Как показали мы с Пенроузом, из общей теории относительности следует: внутри черной дыры время заканчивается, как для самой звезды, так и для несчастного астронавта, которому случится туда упасть. Однако и начало, и конец времени будут точками, в которых уравнения общей теории относительности перестают работать. В частности, теория не может предсказать, что должно образоваться из Большого взрыва. Кое‑кто видит в этом проявление божественной свободы, возможность запустить развитие Вселенной любым угодным Богу способом, но другие (включая меня) чувствуют, что в начальный момент Вселенная должна управляться теми же законами, что и в другие времена. В главе 3 описаны некоторые успехи, достигнутые на пути к этой цели, но у нас пока нет полного понимания происхождения Вселенной.

Причина, по которой общая теория относительности перестает работать в момент Большого взрыва, состоит в ее несовместимости с квантовой теорией, другой великой революционной концепцией ХХ века. Первый шаг в сторону квантовой теории был сделан в 1900 г., когда Макс Планк в Берлине открыл, что свечение разогретого докрасна тела удается объяснить, если свет испускается и поглощается только дискретными порциями – квантами. В одной из своих основополагающих статей, написанных в 1905 г., в период работы в патентном бюро, Эйнштейн показал, что планковская гипотеза квантов позволяет объяснить так называемый фотоэлектрический эффект – способность металлов испускать электроны, когда на них падает свет. На этом основаны современные детекторы света и телекамеры, и именно за эту работу Эйнштейн был награжден Нобелевской премией по физике.

 

Эйнштейн продолжил работать над квантовой идеей в 1920‑х гг., но он был глубоко обеспокоен трудами Вернера Гейзенберга в Копенгагене, Пола Дирака в Кембридже и Эрвина Шрёдингера в Цюрихе, которые разработали новую картину физической реальности, получившую название квантовой механики. Крохотные частицы лишились определенного положения и скорости. Чем точнее мы определим положение частицы, тем менее точно мы сможем измерить ее скорость, и наоборот. Эйнштейн был в ужасе от этой случайности и непредсказуемости в фундаментальных законах и так никогда полностью и не принял квантовой механики. Его чувства нашли выражение в знаменитом изречении: «Бог не играет в кости». Между тем большинство остальных ученых согласились с корректностью новых квантовых законов, которые великолепно согласовывались с наблюдениями и давали объяснения целому ряду прежде необъяснимых явлений. Эти законы лежат в основе современных достижений химии, молекулярной биологии и электроники – технологий, которые преобразили мир за последние полвека.

В декабре 1932 г., поняв, что нацисты вот‑вот придут к власти, Эйнштейн покидает Германию и четыре месяца спустя отказывается от немецкого гражданства. Оставшиеся 20 лет своей жизни он провел в США, в Принстоне, штат Нью‑Джерси, где работал в Институте перспективных исследований.

 

Альберт Эйнштейн с куклой, изображающей его самого, вскоре после переезда в Америку

 

Многие немецкие ученые были евреями по национальности, а нацисты начали кампанию против «еврейской науки», что в числе прочих причин помешало Германии создать атомную бомбу. Эйнштейн и его теория относительности стали основными мишенями этой кампании. Была даже выпущена книга «Сто авторов против Эйнштейна», на что этот последний заметил: «Зачем сто? Если бы я был неправ, хватило бы одного». После Второй мировой войны он настаивал на том, чтобы союзники учредили всемирное правительство для контроля над ядерным оружием. В 1952 г. ему предложили стать президентом Государства Израиль, но Эйнштейн это предложение отклонил. Однажды он сказал: «Политика существует для мгновения, а уравнения – для вечности». Уравнения общей теории относительности Эйнштейна – лучшая эпитафия и памятник для него. Они просуществуют столько же, сколько Вселенная.

За последнее столетие мир изменился гораздо сильнее, чем за все предыдущие века. Причиной тому послужили не новые политические или экономические доктрины, а достижения технологии, которые стали возможны благодаря прогрессу фундаментальных наук. И кто может лучше символизировать этот прогресс, чем Альберт Эйнштейн?

 







Date: 2015-12-12; view: 412; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.015 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию