Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Преобразования в линейных электрических цепях
1. Соединение резисторов. Существует два вида соединения резисторов: последовательное и параллельное (рис. 2.17).
При последовательном соединении резисторов (рис. 2.17а) через все резисторы протекает один и тот же ток I, то есть:
Напряжение же U равно сумме падений напряжений на сопротивлениях:
Общее сопротивление R рассчитывается по формуле:
При параллельном соединении резисторов (рис. 2.17б)
а ток I равен сумме всех токов на нагрузках (резисторах):
Общее сопротивление R участка цепи рассчитывается по формуле:
Если все сопротивления одинаковы, то R = R/n. Можно сделать вывод, что при последовательном соединении резисторов сопротивление на участке цепи возрастает, а при параллельном - уменьшается. 2. Соединение конденсаторов. На рис. 2.18 изображены два способа соединения конденсаторов - последовательное и параллельное. При последовательном соединении конденсаторов (рис. 2.18а)
В отличие от резисторов общая ёмкость конденсаторов рассчитывается по формуле:
При параллельном соединении конденсаторов (рис. 2.18б).
Общая ёмкость рассчитывается следующим образом
Отсюда можно сделать вывод, что если конденсатор последовательно соединить с другим конденсатором, то их общая ёмкость уменьшится, если параллельно - увеличится.
3 Замена треугольника сопротивлений эквивалентной звездой и наоборот.
Рассмотрим схему: Несмотря на то, что эта схема имеет один источник питания, она не поддаётся расчету методом эквивалентных сопротивлений, так как в ней нет сопротивлений, включенных между собой последовательно или параллельно. Особенностью этой схемы является наличие замкнутых контуров из трёх сопротивлений (Rab, Rbc, Rac и Rbd, Rcd, Rbc) причём точки, разделяющие каждую пару смежных сопротивлений, являются узловыми. Такие контуры называются треугольниками сопротивлений. Воспользуемся способом расчета, который состоит в замене треугольника сопротивлений эквивалентной трёхлучевой звездой сопротивлений (Ra, Rb, Rc ) как показано на рис. 2.19 пунктиром. Замена треугольника сопротивлений эквивалентной звездой, и наоборот, осуществляется при условии, что такая замена не изменяет потенциалов узловых точек a, b, c, являющихся вершинами треугольника и эквивалентной звезды. Одновременно предполагается, что в остальной части схемы, незатронутой преобразованием, режим работы не изменяется (не изменяются токи, напряжения, мощности). Без доказательства приведём формулы, которые служат для определения сопротивлений трёхлучевой звезды по известным сопротивлениям эквивалентного треугольника.
Обратное преобразование трёхлучевой звезды в эквивалентный треугольник, осуществляется по формулам
Или через проводимости
Date: 2016-02-19; view: 435; Нарушение авторских прав |