Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Тайна модулярных функций





 

Сриниваса (Шриниваса) Рамануджан — одна из самых удивительных личностей в мире математики, а может быть, и в истории науки в целом. Его сравнивали со вспышкой сверхновой звезды, которая освещала самые темные и потаенные области математики — до тех пор, пока в возрасте 33 лет Рамануджан не умер от туберкулеза, как и Риман в свое время. Работая в полной изоляции от основных направлений и ведущих специалистов в его области, он сумел пройти столетний путь западной математики самостоятельно. Трагедия в том, что его труды большей частью представляют собой бесполезные повторы всем известных математических открытий. В записях Рамануджана повсюду среди туманных формул рассеяны модулярные функции — одно из самых странных математических явлений. Они неоднократно появляются в наиболее удаленных друг от друга и никак не связанных между собой направлениях математики. Одна из функций, упорно возникающих в модулярной теории, в настоящее время носит название функции Рамануджана. Эта причудливая функция содержит элемент, возведенный в двадцать четвертую степень.

В работах Рамануджана число 24 фигурирует постоянно. Такие числа математики называют «магическими»: они постоянно появляются там, где их совсем не ждешь, по причинам, которых никто не понимает. Так и функция Рамануджана волшебным образом возникла в теории струн. Число 24, фигурирующее в функции Рамануджана, так же является источником удивительных сокращений в теории струн. В этой теории все 24 режима функции Рамануджана соответствуют физическим колебаниям струны. Всякий раз, когда струна совершает сложные перемещения в пространстве-времени, разделяясь и восстанавливаясь, необходимо соответствие большому количеству чрезвычайно сложных математических тождеств. Эти тождества и были открыты Рамануджаном. (Поскольку физики добавляют еще два измерения, вычисляя общее количество колебаний, фигурирующих в релятивистской теории, это означает, что пространство-время должно иметь 24 + 2 = 26 пространственно-временных измерений[84].)

Когда функция Рамануджана представлена в обобщенном виде, число 24 заменяется числом 8. Таким образом, критическое число для суперструн — 8 + 2, или 10. Отсюда и вытекает десятое измерение. Струна колеблется в десяти измерениях потому, что ей необходимы обобщенные функции Рамануджана, чтобы сохранять самосогласованность. Другими словами, физики не имеют ни малейшего представления о том, почему № и 26 измерений возникли как измерения струны. Создается впечатление, что в этих функциях проявляется некая скрытая нумерология, которую никто не понимает. Именно эти магические числа возникают в эллиптической модулярной функции, которая определяет количество измерений пространства-времени равным десяти.

В конечном итоге источник десятимерной теории так же загадочен, как сам Рамануджан. На вопрос слушателей, зачем природе существовать в десяти измерениях, физики вынуждены отвечать: «Не знаем». Мы имеем смутное представление о том, почему требуется выбирать несколько измерений пространства-времени (иначе струна не в состоянии колебаться самосогласованным квантовым образом), но не знаем, почему выбор падает на эти конкретные числа. Вероятно, разгадка ждет, когда ее обнаружат в утраченных тетрадях Рамануджана.

 







Date: 2016-02-19; view: 452; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию