Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
сумматоры ⇐ ПредыдущаяСтр 4 из 4
Сумматоры –– функциональные узлы, выполняющие сложение чисел. Подразделяются на: - комбинационные (нет памяти); - накопительные. Полусумматор имеет 2 входа и 2 выхода. Используется для суммиро-вания младших разрядов, т.к. не имеет выхода для переноса. Полный сумматор состоит из двух полусумматоров: 1-й служит для сложения двух чисел, принадлежащих одному разряду, 2-й складывает промежуточную сумму с переносом. Входы можно менять местами. Сумматоры ТТЛ. Предназначен для построения многоразрядных схем сложения и вычитания с параллельной обработкой входной информации и последовательной передачей сигналов переноса. Для каждого слагаемого А и В имеется по 4 входа. Элементы входной логики объединены цепью монтажное &, поэтому сигналы на входы А3 и В3 должны поступать с устройств с открытыми коллекторами.Благодаря усложненной входной логике, сумматор обладает большими функциональными возможностями. Многоразрядные сумматоры и вычитатели на его основе организуются без дополнительных элементов и могут работать в положительной и отрицательной логике. Удобен длясхем с последовательным суммированием. Прямые и инверсные входы принадлежащие каждому из слагаемых одновременно не используются. Когда в работе А1, А2, В1, В2 на А3, А4, В3, В4 подаем высокий уровень. При использовании в качестве рабочих А3, А4, В3, В4 на остальные подаем «0».
| 3) Полупроводниковые диоды
Диодом называется полупроводниковый прибор с одним p-n -переходом и 2-мя выводами, с помощью которых он соединяется с внешней электрической цепью.Полупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n -перехода.Основные характеристики и параметры диодов:
I вых = I к I вх = I б U вх = U бэ U вых = U кэ
I вых = I э I вх = I б U вх = U бк U вых = U кэ
Неинвертирующий сумматор
Действие этой схемы в точности соответствует ее названию. Инвертирующий сумматор фор- мирует алгебраическую сумму нескольких напряжений и меняет ее знак на обратный.
Если отдельным входным напряжениям надо придать различные веса, то используется схема суммирования с масштабными коэффициентами. Используется для суммирования сигналов, для цифро-аналогового преобразователя. В сумматоре отсутствует взаимное влияние источников сигна- лов.
Для инвертирующего сумматора выходное напряжение определяется по формуле
....... 1 2 1 2 (...) î ñ î ñ î ñ âû õ âõ âõ âõn n R R R U U U U R R R
При равенстве входных сопротивлений R 1= R 2= R
Uвых=- (Uвх.1+Uвх.2+...+Uвх.n) - для инвертирующего сумматора; R R со..
- для неинвертирующего сумматора... 1 2 1 / (...) î ñ âû õ âõ âõ âõn R R U U U U n
В схеме сумматоров переменным параметром является сопротивление обратной связи R о.с, которое и определяет коэффициент усиления. Формулы приведены для постоянных величин (числовой сумматор) Uвх.1, Uвх.2 и т.д.
21) генератор прямоугольных колебаний (мультивибратор)
Мультивибратор — релаксационный генератор сигналов электрических прямоугольных колебаний с короткими фронтами. Термин предложен голландским физиком ван дер Полем, так как в спектре колебаний мультивибратора присутствует множество гармоник — в отличие от генератора синусоидальных колебаний («моновибратора»). Впервые мультивибратор был описан Икклзом и Джорданом в 1918 году.
Существуют три типа схем мультивибратора в зависимости от режима работы:
нестабильный, или автоколебательный: схема самопроизвольно переходит из одного состояния в другое. При этом не обязателен сигнал синхронизации, если не требуется захват частоты;
моностабильный: одно из состояний является стабильным, но другое состояния неустойчиво (переходное). Мультивибратор на некоторое время, определяемое параметрами его компонентов переходит в неустойчивое состояние под действием запускающего импульса. Затем возвращается в устойчивое состояния до прихода очередного запускающего импульса. Такие мультивибраторы используются для формирования импульса с фиксированной длительностью, не зависящей от длительности запускающего импульса. Такой тип мультивибраторов иногда, в литературе, называют одновибраторы или ждущие мультивибраторы.
бистабильный: схема устойчива в любом состоянии. Схема может быть переключена из одного состояния в другое с помощью внешних импульсов. Такие устройства называют триггерами, название «мультивибратор» не совсем корректно, так как двусмысленно.
24) основные логические элементы, понятия
Логические элементы — устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого — «1» и низкого — «0» уровней в двоичной логике, последовательность «0», «1» и «2» в троичной логике, последовательности «0», «1», «2», «3», «4», «5», «6», «7», «8» и «9» в десятичной логике). Физически логические элементы могут быть выполнены механическими, электромеханическими (на электромагнитных реле), электронными (на диодах и транзисторах), пневматическими, гидравлическими, оптическими и др.
Реализация логических элементов возможна при помощи устройств, использующих самые разнообразные физические принципы:
Счетчики с последовательным переносом представляют собой цепочку триггеров, в кото-рых импульсы, подлежащие счету, поступают на вход 1-го триггера, а сигнал переноса передается последовательно от одного разряда к другому.
Достоинства: простота схемы и увеличение разрядности.
Недостатки: низкое быстродействие из-за последовательного принципа работы.
Двоичные счетчики
Схему двоичного счетчика можно получить с помощью формального синтеза, однако более наглядным путем представляется эвристический. Таблица истинности двоичного счетчика — последовательность двоичных чисел от нуля до 2^n-1, где n - разрядность счётчика. Наблюдение за разрядами чисел, составляющих таблицу, приводит к пониманию структурной схемы двоичного счетчика. Состояния младшего разряда при его просмотре по соответствующему столбцу таблицы показывают чередование нулей и единиц вида 01010101..., что естественно, т. к. младший разряд принимает входной сигнал и переключается от каждого входного воздействия. В следующем разряде наблюдается последовательность пар нулей и единиц вида 00110011.... В третьем разряде образуется последовательность из четверок нулей и единиц 00001111... и т.д. Из этого наблюдения видно, что следующий по старшинству разряд переключается с частотой, в два раза меньшей, чем данный.
Известно, что счетный триггер делит частоту входных импульсов на два. Сопоставив этот факт с указанной выше закономерностью, видим, что счетчик может быть построен в виде цепочки последовательно включенных счетных триггеров. Заметим, кстати, что согласно ГОСТу входы элементов изображаются слева, а выходы справа. Соблюдение этого правила ведет к тому, что в числе, содержащемся в счетчике, младшие разряды расположены левее старших.
38) дешифратор
Дешифра́тор (декодер), англ. Decoder — комбинационная схема, преобразующая n-разрядный двоичный, троичный или k-ичный код в \ k^n-ичный одноединичный код, где \ k — основание системы счисления. Логический сигнал активен на том выходе, порядковый номер которого соответствует двоичному, троичному или k-ичному коду.
Дешифраторы являются устройствами, выполняющими двоичные, троичные или k-ичные логические функции (операции). Из логических микросхем, являющихся дешифраторами со входами разрешения можно строить дешифраторы на большее число входов и выходов. Например, из двух полных трёхвходовых дешифраторов можно построить полный дешифратор на 4 входа и 16 выходов. При этом 3 младших бита входного слова подаются на оба дешифратора, а на вход разрешения одного из них (старшего) 4-й бит слова, на вход разрешения второго дешифратора (младшего) логически инвертированный (NOT) 4-й бит слова.
39)Двоично-десятичный дешифратор
Дешифратором называется комбинационное устройство, преобразующее n-разрядный дво-ичный код в логический сигнал, появляющийся на том выходе, десятичный номер которого соот-ветствует двоичному коду.
Двоичный дешифратор работает по следующему принципу. Пусть дешифратор имеет N входов, на которые подаётся двоичное слово x_{N-1} x_{N-2}... x_0, тогда на выходах формируется код, разрядности меньшей или равной 2^N, где разряд, номер которого равен численному представлению входного слова, становится активным (принимает значение логической единицы, логического нуля или переводится в высокоимпедансное состояние - отключается, что зависит от конкретной реализации дешифратора), все остальные разряды неактивны. Очевидно, что максимально возможная разрядность выходного слова равна 2^N. Такой дешифратор называется полным. Если часть входных наборов не используется, то число выходов меньше 2^N, и дешифратор является неполным. Из логических микросхем, являющихся дешифраторами со входами разрешения можно строить дешифраторы на большее число входов и выходов. Например, из двух полных трёхвходовых дешифраторов можно построить полный дешифратор на 4 входа и 16 выходов. При этом 3 младших бита входного слова подаются на оба дешифратора, а на вход разрешения одного из них (старшего) 4-й бит слова, на вход разрешения второго дешифратора (младшего) логически инвертированный (NOT) 4-й бит слова.
40) шифраторы
Шифратор — это комбинационное устройство, преобразующее десятичные числа в двоичную систему счисления, причем каждому входу может быть поставлено в соответствие десятичное чис-ло, а набор выходных логических сигналов соответствует определенному двоичному коду. Шиф-ратор иногда называют «кодером» (от англ. coder) и используют, например, для перевода деся-тичных чисел, набранных на клавиатуре кнопочного пульта управления, в двоичные числа.
Если количество входов настолько велико, что в шифраторе используются все возможные комбинации сигналов на выходе, то такой шифратор называется полным, если не все, то непол-ным. Число входов и выходов в полном шифраторе связано соотношением п = 2т, где п — число вхо-дов, т — число выходов. На практике часто используют шифратор с приоритетом. В таких шифраторах код двоич-ного числа соответствует наивысшему номеру входа, на который подан сигнал «1», т. е. на прио-ритетный шифратор допускается подавать сигналы на несколько входов, а он выставляет на вы-ходе код числа, соответствующего старшему входу. Если на всех входах — логическая единица, то на всех выходах также логическая единица, что соответствует числу 0 в так называемом инверсном коде (1111). Если хотя бы на одном входе имеется логический ноль, то состояние выходных сигналов определяется наибольшим номе ром входа, на котором имеется логический ноль, и не зависит от сигналов на входах, имеющих меньший номер.
41) мультиплксор
Mультипле́ксор — устройство, имеющее несколько сигнальных входов, один или более управляющих входов и один выход. Мультиплексор позволяет передавать сигнал с одного из входов на выход; при этом выбор желаемого входа осуществляется подачей соответствующей комбинации управляющих сигналов.
Мультиплексоры могут использоваться в делителях частоты, триггерных устройствах, сдвигающих устройствах и др. Мультиплексоры могут использоваться для преобразования параллельного двоичного кода в последовательный. Для такого преобразования достаточно подать на информационные входы мультиплексора параллельный двоичный код, а сигналы на адресные входы подавать в такой последовательности, чтобы к выходу поочередно подключались входы, начиная с первого и заканчивая последним. Схематически мультиплексор можно изобразить в виде коммутатора, обеспечивающего подключение одного из нескольких входов (их называют информационными) к одному выходу устройства. Коммутатор обслуживает управляющая схема, в которой имеются адресные входы и, как правило, разрешающие (стробирующие). В качестве управляющей схемы обычно используется дешифратор. В цифровых мультиплексорах логические элементы коммутатора и дешифратора обычно объединяются.
48) микропроцессоры
Развитие микропроцессорной техники и ее использование в народном хозяйстве, научных исследованиях, образовании и других сферах человеческой деятельности является в настоящее время приоритетным направлением научно-технического прогресса. Разработка, производство и эксплуатация такой техники требует подготовки соответствующих специалистов, обладающих до-статочно глубокими знаниями принципов построения, организации и функционирования совре-менных микропроцессорных устройств, комплексов и систем. Такие знания необходимы не только специалистам различных областей вычислительной техники, но и инженерам других специально-стей, связанных с применением микропроцессоров и микроЭВМ.
Применение микропроцессоров в автоматизированных системах существенно расширяет их функциональные возможности, облегчает реализацию различных законов оптимального и адап-тивного управления при высокой точности регулирования по основным координатам. В микро-процессорных системах появляются возможности для выполнения функций контроля и диагно-стики, а также возможности для организации защиты устройств в различных аварийных ситуаци-ях.
Применение микропроцессоров обуславливает и новые аспекты при проектировании, налад-ке и эксплуатации. Вместо разработки электрических схем аппаратной реализации алгоритмов управления объектом необходимо разрабатывать программу, обеспечивающую реализацию дан-ного алгоритма. При создании автоматических и автоматизированных систем различного назначения в каче-стве устройств обработки информации широко используются два класса средств цифровой техни-ки:
1) устройства с жесткой структурой, выполненные на базе цифровых логических схем;
2) программируемые устройства на базе микропроцессорной техники.
Микропроцессор рассчитан на совместную работу с запоминающими устройствами и устройствами ввода-вывода информации. В зависимости от функциональных возможностей мик-ропроцессоры делят на универсальные и специализированные.
|
Date: 2016-02-19; view: 786; Нарушение авторских прав