Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Современная картина химических знаний





Современную картину химических знаний объясняют с позиций четырех концептуальных систем, которые схематично представлены на рис.1. Рис.1. На рисунке показано последовательное появление новых, концепций в химической науке, которые опирались на предыдущие достижения, сохраняя в себе все необходимое для дальнейшего развития. Даже невооруженным взглядом в этих этапах видна симметрия этапов.
В левой части тождества отношение отражает структурный аспект эволюции химии, правая часть тождества, напротив, отражает уже функциональный (процессы) аспект эволюции химии. Исследование элементарного и молекулярного составов веществ (учение о составе вещества) Учение о составе веществ является первым уровнем химических знаний. До 20-30-х гг. XIX в. вся химия не выходила за пределы этого подхода. Но постепенно рамки состава (свойств) - стали тесны химии, и во второй половине XIX в. главенствующую роль в химии постепенно приобрело понятие «структура», ориентированное, что и отражено непосредственно в самом понятии, на структуру молекулы реагента. Химическим соединением называется атомно-молекулярная система, обладающая следующими признаками: 1) содержанием большего числа атомов ограниченного числа «сортов»; 2) каждому сорту атомов соответствует определенная координация постоянных, определяющих индивидуальность химического соединения, распределение атомов по сортам (состав); 3) способностью существовать в виде одного или нескольких химических веществ. На этом уровне решались вопросы определения химического элемента, химического соединения и получения новых материалов на базе более широкого использования химических элементов. Первое научное определение химического элемента, когда еще не было открыто ни одного из них, сформулировал английский химик и физик Р. Бойль. Первым был открыт химический элемент фосфор в 1669 г., потом кобальт, никель и другие. Открытие французским химиком А. Л. Лавуазье кислорода и установление его роли в образовании различных химических соединений позволило отказаться от прежних представлений об «огненной материи» (флогистоне). В Периодической системе Д.И. Менделеева насчитывалось 62 элемента, в 1930-е гг. она заканчивалась ураном. В 1999 г. было сообщено, что путем физического синтеза атомных ядер открыт 114-й элемент. Вопросы, связанные с химическими соединениями, длительное время не вызывали споров в среде химиков. Казалось очевидным, что именно относится к химическим соединениям, а что - к простым телам или смесям. В результате химических и физических открытий претерпело изменение классическое определение молекулы. Молекула понимается как наименьшая частица вещества, которая в состоянии определять его свойства и в то же время может существовать самостоятельно. Представления о классе молекул расширились, в него включают ионные системы, атомные и металлические монокристаллы и полимеры, образующиеся на основе водородных связей и представляющие собой уже макромолекулы. Они обладают молекулярным строением, хотя и не находятся в строго постоянном составе. С открытием физиками природы химизма как обменного взаимодействия электронов химики совершенно по-другому стали рассматривать химическое соединение. «Это качественно определенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет обменного взаимодействия (химической связи) объединены в частицы-молекулы, комплексы, монокристаллы или иные агрегаты. Химическое соединение - понятие более широкое, чем «сложное вещество», которое должно состоять из двух и более разных химических элементов. Химическое соединение может состоять и из одного элемента. Это О2, графит, алмаз и другие кристаллы без посторонних включений в их решетку в идеальном случае». Структурная химия Структура - это устойчивая упорядоченность качественно неизменной системы (молекулы). Под данное определение подпадают все структуры, которые исследуются в химии: квантово-механические, основанные на понятиях валентности и химического сродства, и др. Вершиной структурной химии стал период после 1880 г., когда был открыт органический синтез и когда началось его бурное (можно сказать, триумфальное) развитие. Химики считали, что из нескольких простейших элементов они могут складывать все остальные. С возникновением структурной химии у химической науки появились неизвестные ранее возможности целенаправленного качественного влияния на преобразование вещества. В настоящее время на уровне структуры молекулы понимается и пространственная, и энергетическая упорядоченность. Однако дальнейшее развитие химической науки и основанного на ее достижениях производства показали более точно возможности и пределы структурной химии. Например, многие реакции органического синтеза на основе структурной химии давали очень низкие выходы необходимого продукта и большие отходы в виде побочных продуктов. Вследствие этого их нельзя было использовать в промышленном масштабе. В последнее время ученые открыли новую группу металло-органических соединений с двойной структурой, из-за чего они получили название «сэндвичевых соединений». Это не что иное как молекула, представляющая собой две пластины из соединений водорода и углерода, между которыми находится атом металла или атомы двух металлов. Пока они практического применения не нашли, но оказали влияние на пересмотр прежних взглядов на валентность и химические связи. Структурная химия неорганических соединений ищет пути получения кристаллов для производства высокопрочных материалов с заданными свойствами, обладающих термостойкостью, сопротивлением агрессивной среде и другими качествами, предъявляемыми сегодняшним уровнем развития науки и техники. Решение этих вопросов наталкивается на различные препятствия. Выращивание, например, некоторых кристаллов требует исключения условий гравитации. Поэтому такие кристаллы выращивают в космосе, на орбитальных станциях. Учение о химических процессах Наиболее глубокое взаимопроникновение физики, химии и биологии имеет место в учении о химических процессах. Это учение основывается на термодинамике и кинетике (физической химии) и принадлежит как физике, так и химии. Химический процесс есть то основное явление, которое отличает химию от физики, делая первую более сложной наукой. Химическая кинетика. Объясняет качественные и количественные изменения в химических процессах и выявляет механизм реакции. Реакции проходят, как правило, ряд последовательных стадий, которые составляют полную реакцию. Скорость реакции зависит от условий протекания и природы веществ, вступивших в нее. К ним относятся концентрация, температура и присутствие катализаторов. Описывая химическую реакцию, ученые скрупулезно отмечают все условия ее протекания, поскольку в других условиях и при иных физических состояниях веществ эффект будет разный. Таким образом, химическая наука изучает химические элементы, процессы химического взаимодействия различных веществ, проблемы получения новых веществ с заданными свойствами и множество других проблем, возникающих в процессе развития химических знаний. Протекание процессов определяется так называемыми структурно-кинетическими факторами: строением исходных реагентов, их концентрацией, наличием катализаторов и других добавок, способов смешения реагентов, материалами и конструкцией сосудов (реакторов), в которых протекает реакция, и т.д. Понятие о катализе. Среди этих структурно-кинетических факторов наиболее важным является катализ. Последний представляет собой посредничество третьих тел в процессе реакции и был открыт К. Кирхгофом в 1812 г. Сущность катализа сводится к следующему: 1) активная молекула реагента достигается за счет их неполновалентного взаимодействия с веществом катализатора и состоит в расслаблении химических связей реагента; 2) в общем случае любую каталитическую реакцию можно представить проходящей через промежуточный комплекс, в котором происходит перераспределение расслабленных (неполновалентных) химических связей. Химические процессы представляют собой сложнейшее явление как в неживой, так и в живой природе. Эти процессы изучают химия, физика и биология. Перед химической наукой стоит принципиальная задача - научиться управлять химическими процессами. Дело в том, что некоторые процессы не удается осуществить, хотя в принципе они осуществимы, другие трудно остановить - реакции горения, взрывы, а часть из них трудноуправляема, поскольку они самопроизвольно создают массу побочных продуктов. Для управления химическими процессами разработаны термодинамический и кинетический методы. Все химические реакции имеют свойство обратимости, происходит перераспределение химических связей. Обратимость удерживает равновесие между прямой и обратной реакциями. В действительности равновесие зависит от условий прохождения процесса и чистоты реагентов. Смещение равновесия в ту или другую стороны требует специальных способов управления реакциями. Все проблемы, связанные с такими сложными процессами, решает химическая кинетика. Она устанавливает зависимость химических реакций от различных факторов - от строения и концентрации реагентов, наличия катализаторов, от материала и конструкции реакторов и т.д. Эволюционная химия Эволюционная химия зародилась в 1950 - 1960 гг. Под эволюционными проблемами следует понимать проблемы самопроизвольного синтеза новых химических соединений (без участия человека). Эти соединения являются более сложными и более высокоорганизованными продуктами по сравнению с исходными веществами. В основе эволюционной химии лежат процессы биокатализа, ферментологии; ориентирована она главным образом на исследование молекулярного уровня живого, что основой живого является биокатализ, т.е. присутствие различных природных веществ в химической реакции, способных управлять ею, замедляя или ускоряя ее протекание. Эти катализаторы в живых системах определены самой природой, что и служит идеалом для многих химиков. Идея концептуального представления о ведущей роли ферментов, биорегуляторов в процессе жизнедеятельности, предложенная французским естествоиспытателем Луи Пастером в ХIX веке, остается основополагающей и сегодня. Чрезвычайно плодотворным с этой точки зрения является исследование ферментов и раскрытие тонких механизмов их действия. Ферменты - это белковые молекулы, синтезируемые живыми клетками. В каждой клетке имеются сотни различных ферментов. С их помощью осуществляются многочисленные химические реакции, котолрые благодаря каталитическому действию ферментов могут идти с большой скоростью при температурах, подходящих для данного организма, т.е. в пределах примерно от 5 до 40 градусов. Можно сказать, что ферменты - это биологические катализаторы. В эволюционной химии существенное место отводится проблеме «самоорганизации» систем. Теория самоорганизации «отражает законы такого существования динамических систем, которое сопровождается их восхождением на все более высокие уровни сложности в системной упорядоченности, или материальной организации». Наука же считает, что только шесть элементов - углерод, водород, кислород, азот, фосфор и сера составляют основу живых систем, из-за чего они получили название органогенов. Весовая доля этих элементов в живом организме составляет 97,4%. Кроме того, в состав биологически важных компонентов живых систем входят еще 12 элементов: натрий, калий, кальций, магний, железо, цинк, кремний, алюминий, хлор, медь, кобальт, бор. Особая роль отведена природой углероду. Этот элемент способен организовать связи с элементами, противостоящими друг другу, и удерживать их внутри себя. Атомы углерода образуют почти все типы химических связей. На основе шести органогенов и еще около 20 других элементов природа создала около 8 млн. различных химических соединений, обнаруженных к настоящему времени. 96% из них приходится на органические соединения. Химики стремятся открыть секреты природы. Поиски различного рода природных катализаторов позволяют химикам сделать ряд выводов (к этому различными путями пришли также геология, геохимия, космохимия, термодинамика, химическая кинетика): Функциональный подход к объяснению предбиологической эволюции сосредоточен на исследовании процессов самоорганизации материальных систем, выявлении законов, которым подчиняются такие процессы. Это в основном позиции физиков и математиков. Крайняя точка зрения здесь склоняется к тому, что живые системы могут быть смоделированы даже из металлических. В 1969 г. появилась общая теория химической эволюции и биогенеза, выдвинутая ранее в самых общих положениях профессором Московского университета А.П. Руденко. В основе этой теории лежит утверждение о том, что процесс саморазвития химических катализаторов двигался в сторону их совершенствования, шел постоянный отбор все новых катализаторов с большей реактивной активностью. Открытый А.П. Руденко основной закон химической эволюции гласит, что эволюционные изменения катализатора происходят в том направлении, где проявляется его максимальная активность. Саморазвитие, самоорганизация и самоусложнение каталитических систем происходят за счет энергии базисной реакции. Поэтому эволюционируют каталитические системы с большей энергией. Такие системы разрушают химическое равновесие и в результате являются инструментом отбора наиболее устойчивых эволюционных изменений в катализаторе. Теория саморазвития каталитических систем дает следующие возможности: выявлять этапы химической эволюции и на этой основе классифицировать катализаторы по уровню их организации; использовать принципиально новый метод изучения катализа; дать конкретную характеристику пределов в химической эволюции и перехода от химогенеза (химического становления) к биогенезу, связанного с преодолением второго кинетического предела саморазвития каталитических систем. Набирает теоретический и практический потенциал новейшее направление, расширяющее представление об эволюции химических систем, - нестационарная кинетика. Развитие химических знаний позволяет надеяться на разрешение многих проблем, которые встали перед человечеством в результате его наукоемкой и энергоемкой практической деятельности. Химическая наука на ее высшем эволюционном уровне углубляет представления о мире. Концепции эволюционной химии, в том числе о химической эволюции на Земле, о самоорганизации и самосовершенствовании химических процессов, о переходе от химической эволюции к биогенезу, являются убедительным аргументом, подтверждающим научное понимание происхождения жизни во Вселенной. Химическая эволюция на Земле создала все предпосылки для появления живого из неживой природы. Жизнь во всем ее многообразии возникла на Земле самопроизвольно из неживой материи, она сохранилась и функционирует уже миллиарды лет. Жизнь полностью зависит от сохранения соответствующих условий ее функционирования. А это во многом зависит от самого человека.

Заключение

 

В прошлом веке специально подчёркивалось, что «химия занимается не телами, а веществами» (Д.И.Менделеев), то теперь мы являемся свидетелями того, как объектом всё более пристального внимания учёных-химиков становятся именно реальные макротела- те самые смеси, растворы, сплавы, газы, с которыми они непосредственно имеют дело в лаборатории и на производстве. По словам К.Маркса, прогресс химии «не только умножает число полезных веществ, но и число полезных применений уже известных веществ».

Как и другие составляющие естествознания, химия имеет многочисленные практические приложения. Однако еще Д.И.Менделеевым было обращено внимание на существенную особенность этой науки: химия в значительной мере сама создает свой объект изучения.Самые разнообразные исследования в ней направлены на раскрытие закономерностей химических превращений, которые реализованы искусственно, на получение и изучение веществ, большинство из которых в природе не встречается. Химия как наука теснейшим образом связана с химией как производством. Д.И. Менделеев рассматривал химические заводы как лаборатории больших размеров. Основная цель современной химии, вокруг которой строится вся исследовательская работа, заключается в получении веществ с заданными свойствами. Это и определяет содержание двуединой центральной задачи химии: исследование генезиса (то есть происхождения) свойств веществ и разработка на этой основе методов получения веществ с заранее заданными свойствами.


Список литературы

 

1. Карпенко С.Х. «Концепции современного естествознания», М., 2004

2. Найдыш В.М. «Концепции современного естествознания», М., 1999г.

3.Беляев М.И., "МИЛОГИЯ", 1999-2006г

Date: 2015-06-05; view: 1480; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию