Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Теория игр
Теория игр помогает принимать решения в условиях неопределенности. Моделирует игровые ситуации, в которых 2 или более стороны (игроки) преследуют различные цели, а результаты любого действия каждой из сторон зависят от действий партнеров. Так как цели различны, то возникает конфликт между ними, и часто выигрыш одного игрока означает проигрыш другого. Эти ситуации часто случаются на практике (шахматы, домино, карты, военные действия, взаимоотношения поставщик – потребитель, банк – клиент, покупатель – продавец и т.п.). Иногда противоположным игроком считают Природу (которая вредит как может) – так называемые игры с Природой (игра в рулетку, игра на бирже и т.п.). Для простоты будем рассматривать парные (участвуют 2 игрока) антагонистические (выигрыш одного игрока равен проигрышу другого) игры. Игра проходит следующим образом. На каждом этапе игроки делает по одному ходу. Личный ход – сознательный выбор игроком одного из возможных действий. Случайный ход – случайно выбранное действие. Стратегия игрока – совокупность правил, определяющих выбор его действия при каждом личном ходе в зависимости от сложившейся ситуации. Цель игроков – найти оптимальные стратегии (дающие максимальный выигрыш / минимальный проигрыш). Если игра состоит из нескольких этапов, то максимизируют средний выигрыш / минимизируют средний проигрыш. Для каждого игрока можно составить платежную матрицу (матрицу игры). Пусть игру ведут игроки A и B. Построим платежную матрицу для игрока A. Ход игрока A соответствует выбору строки матрицы, ход игрока B – выбору столбца. На пересечении выбранной строки – столбца находится выигрыш игрока A (равный проигрышу игрока B). Например:
Игрок A стремится максимизировать свой выигрыш, а игрок B – уменьшить его (навредить). Для любой строки, выбранной игроком A, игрок B будет выбирать столбец, дающий наименьший выигрыш игроку A. Для строки 1 – столбец 1 или 2 (выигрыш 3), для строки 2 – столбец 4 (2), для строки 3 – столбец 4 (4). Игрок A выберет в итоге строку 3, которая дает ему наибольший выигрыш при вреде со стороны игрока B (4). Это гарантированный выигрыш игрока A при любой стратегии игрока B. Он называется также нижней ценой игры или максимином. Если поменять теперь роли игроков, то можно определить по аналогии гарантированный проигрыш игрока B – верхнюю цену игры или минимакс. Для любой столбца, выбранного игроком B, игрок A будет выбирать строку, дающую наибольший проигрыш игроку B. Для столбца 1 – строку 2 (проигрыш 9), для столбца 2 – строку 2 (10), для столбца 3 – строку 1 (6), для столбца 4 – строку 1 (8). Игрок B выберет в итоге столбец 3, который дает ему наименьший проигрыш при вреде со стороны игрока A (6). Если бы нижняя и верхняя цены игры совпадали, то игра имела бы седловую точку, и игроки всегда выбирали бы один и тот же ход, т.е. имели бы чистые оптимальные стратегии. Но цены игры не совпадают, поэтому игроки должны выбрать в качестве оптимальных смешанные стратегии (содержат вероятность выбора каждой из строк / столбцов игроками на каждом этапе игры). Задачи теории игр решаются с использованием методов линейного программирования.
Date: 2015-06-05; view: 497; Нарушение авторских прав |