Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Хромосомные технологии в селекции зерновых культур





Современная селекция растений использует целый комплекс методов, основанных на последних достижениях множества биологических наук,
среди которых одно из ключевых мест занимает цитогенетика. Разработанные цитогенетиками подходы к манипулированию генетическим материалом клетки заложили методические основы хромосомной инженерии и значительно расширили возможности целенаправленного преобразования генетической структуры культурных видов растений.
Термин «хромосомная инженерия» был введен в обиход американским ученым Эрнестом Сирсом и впервые озвучен в его знаменитой статье «Хромосомная инженерия пшеницы», опубликованной в материалах Стадлеровского симпозиума. Согласно трактовке автора, он означает перенос сегментов чужеродных хромосом, несущих отдельные желаемые гены, в хромосомы пшеницы [1]. По мере разработки этого направления содержание понятия «хромосомная инженерия» было расширено и сейчас включает манипуляции хромосомным составом растений на уровне целых геномов, отдельных хромосом и их сегментов с целью увеличения генетического разнообразия культурных видов.
Наибольшее применение хромосомные технологии нашли в генетико-селекционных программах по зерновым культурам. Возможность манипуляций генетическим материалом клетки методами хромосомной инженерии основана на сходстве у представителей трибы Triticeae (к которой относятся важнейшие зерновые культуры) групп сцепления, обусловленном происхождением от общего предка. Значительная коллинеарность генетических карт родственных таксонов обеспечивает эффект компенсации при взаимозамещении хроматина в пределах группы сцепления, причем величина этого эффекта тем больше, чем ближе филогенетическое родство донора и реципиента генетического материала.
В зависимости от ожидаемого эффекта компенсации выбирается и стратегия переноса чужеродного генетического материала. Когда донором чужеродного хроматина являются близкородственные виды, возможен перенос целых хромосом путем создания замещенных и дополненных форм. Когда же источник интересующих нас генов — отдаленные сородичи, размер интрогрессии должен быть сведен до минимума, что достигается индукцией гомеологичного спаривания с последующей рекомбинацией генетического материала и образованием межгеномных транслокаций хромосом. В случае филогенетически отдаленных видов применяются также манипуляции на уровне целых геномов, результатом которых является создание амфидиплоидов. Такие формы, как правило, служат промежуточным звеном при реконструкции кариотипа, однако известны примеры непосредственного практического использования амфидиплоидов. Самый яркий из них — тритикале.
Объединение в одном организме генетических потенциалов пшеницы и ржи привело к созданию культуры, которая по показателям урожайности и питательной ценности превосходит обоих родителей, а по устойчивости к неблагоприятным почвенно-климатическим условиям не уступает ржи. В то же время тритикале не лишены недостатков, главный из которых — низкие хлебопекарные качества. Он может быть устранен с помощью методов хромосомной инженерии за счет введения в кариотип гексаплоидных тритикале хромосом D-генома пшеницы, несущих глиадинкодирующие локусы высокой селекционной значимости. При этом наиболее желаемым способом такой интрогрессии является замещение хромосомами D-генома соответствующих гомеологов А- или В-геномов пшеницы при сохранении полного набора хромосом ржи [2, 3].
Сотрудниками лаборатории хромосомной инженерии растений Института генетики и цитологии НАН Беларуси выполнен цикл научных исследований по созданию и изучению гексаплоидных тритикале с различным качественным и количественным составом D(A)- и D(B)-замещений хромосом (рис. 1, 2) [4]. В ходе экспериментов получены данные, свидетельствующие о перспективности синтеза для селекционных целей гексаплоидных тритикале с множественными интрогрессиями хромосом D-генома пшеницы [5]. Показано, что формы, содержащие 3—4 межгеномных замещения, по сравнению с формами с одиночными замещениями и обычными тритикале имеют более высокое содержание белка и улучшенное качество клейковины, а также характеризуются высокой цитологической стабильностью и, как следствие, устойчиво сохраняют в своем кариотипе интродуцированные хромосомы D-генома в ряду последующих поколений (рис. 3, 4).
Поскольку интрогрессия хромосом D-генома может влиять также на экспрессию генов, контролирующих другие хозяйственно ценные признаки, на линейном материале нами были изучены генетические эффекты различных типов модификаций ядерного генома тритикале на формирование таких показателей, как длина колоса, число колосков и цветков в нем, количество завязавшихся зерен, масса 1 тыс. зерен. Проведенный анализ выявил негативное влияние отдельных интрогрессий на исследуемые признаки. Установлено, что присутствие в кариотипе гексаплоидных тритикале 6D(6B)-замещения хромосом отрицательно сказывается на продуктивности колоса, однако отмеченный эффект не связан с интрогрессией в геном хромосомы 6D, а является следствием отсутствия в их кариотипе пары хромосом 6В. Исходя из этого, интрогрессию в кариотип гексаплоидных тритикале хромосомы 6D предпочтительнее осуществлять в виде 6D(6А)-замещения. Показано также, что введение в кариотип 6х-тритикале хромосомы 4D приводит к статистически достоверному увеличению длины колоса, но положительной корреляции между этим признаком и продуктивностью колоса не выявлено. К тому же у исследованных форм наблюдалось увеличение высоты растения и, как следствие, склонность к полеганию.
В результате был сделан вывод о необходимости учитывать при разработке стратегии реконструкции кариотипа тритикале как эффекты интродуцированных хромосом, так и последствия удаления из кариотипа соответствующих гомеологов.
В связи с тем что в большинстве случаев введенные в кариотип чужеродные хромосомы помимо целевого локуса содержат нежелательные гены, снижающие практическую ценность интрогрессивных форм, современная стратегия хромосомно-инженерных работ направлена на сокращение размеров интрогрессий путем получения межгеномных транслокаций хромосом. Метод получения межгеномных транслокаций основан на индукции спаривания между родительским и чужеродным гомеологами и последующей рекомбинации генетического материала. Закономерности данного процесса изучены нами на примере тетраплоидных пшенично-ржаных амфидиплоидов. Характерный для них высокий уровень гомеологичного спаривания и, как следствие, большое число различного типа межгеномных транслокаций позволяют использовать данные формы в качестве генетического «мостика» для переноса сегментов чужеродных хромосом. Традиционно тетраформы содержат в пшеничном компоненте кариотипа смесь хромосом А- и В-геномов, между тем с геномом ржи могут комбинироваться геномы T.monococcum, Aegilops или пырея, что значительно расширяет спектр возможных межгеномных рекомбинаций [6, 7].
На основании данных, полученных в ходе изучения рекомбинантных форм пшенично-ржаных гибридов, были предложены эффективные технологии создания сортов тритикале продовольственного назначения с использованием хромосомно-инженерных подходов и молекулярно-цитогенетического маркирования материала. Эти технологии реализуются на практике в рамках ГП «Инновационные биотехнологии». Лучшие рекомбинантные формы гексаплоидных тритикале уже переданы в НПЦ НАН Беларуси по земледелию для включения в процесс интрогрессивно-рекомбинационной
селекции.
На решение проблемы обогащения генофонда тритикале направлены также работы по созданию нового типа ржано-пшеничных гибридов — секалотритикум, у которых цитоплазма пшеницы замещена на цитоплазму ржи. Предполагается, что такая замена приведет к усилению экспрессии ржаного компонента у данных гибридов и откроет новые возможности для наращивания адаптивного потенциала, пластичности и устойчивости тритикале к биотическим и абиотическим факторам внешней среды. В лаборатории предложен эффективный способ получения секалотритикум, изучены механизмы формирования их гибридного генома и особенности проявления хозяйственно ценных признаков [8]. Практическим итогом проведенных исследований стала разработка комплексной технологии создания и селекции ржано-пшеничных амфидиплоидов (рис. 5). Выделенные в ходе ее реализации стабильные формы секалотритикум используются в качестве исходного материала для рекомбинационной селекции на продуктивность и устойчивость гетероплазматических тритикале.
Совместно с НПЦ НАН Беларуси по земледелию начаты работы по экспериментальному созданию полиплоидных форм озимой ржи (RRRR, 2n = 28) с использованием хромосомных технологий [8]. За прошедший период получены и включены в селекционный процесс тетраплоидные аналоги ряда белорусских сортов диплоидной озимой ржи (Заречанская зеленоукосная, Юбилейная, Алькора, Плиса, Зарница и др.), исследуются особенности формирования ржаного полигенома. Поскольку для максимального сохранения на тетраплоидном уровне высокой гетерогенности исходной популяции диплоидной ржи (в связи с перекрестным способом опыления) требуется массовое получение тетраформ, активная работа в этом направлении будет продолжена.
Очевидно, что хромосомные технологии существенно расширяют горизонты селекции, однако необходимым условием их успешного внедрения в практику является укрепление и дальнейшее развитие сотрудничества цитогенетиков и селекционеров. Такой творческий союз позволит значительно ускорить процесс обогащения генофонда зерновых культур, что создаст предпосылки для устойчивого прогресса в их селекции



3. Список используемой литературы:интернет ресурсы






Date: 2015-06-05; view: 1614; Нарушение авторских прав

mydocx.ru - 2015-2021 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию