Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Уравнение прямолинейной регрессии
Корреляционную связь в форме, близкой к прямолинейной, можно представить в виде уравнения прямой линии: (11.8) где – среднее значение результативного признака; х – значение факторного признака; – параметр уравнения, обычно характеризующий минимальное значение результативного признака; – коэффициент пропорциональности изменения признака-результата. В уравнении 9.8 параметр характеризует среднее значение результативного признака у при элиминировании признака-фактора х, т.е. х=0. Коэффициент в зависимости от знака (+) или (–) показывает пропорциональность изменения результата у, т.е. его приращения или убывания при абсолютном изменении фактора на каждую его единицу. Для нахождения параметров , уравнения 9.8 составляют и решают следующую систему нормальных уравнений: (11.9) (11.10) При расчете искомых параметров , можно воспользоваться макетом табл. 11.5.
Т а б л и ц а 11.5. Вспомогательные расчеты для определения параметров уравнения прямолинейной связи
Таким образом, для решения системы нормальных уравнений (11.9 и 11.10) необходимо найти значения Σх, Σу, Σху и Σх2. Допустим, необходимо определить, как изменяется в среднем урожайность рапса в зависимости от колебания доз минеральных удобрений по данным статистической совокупности из 30 сельскохозяйственных организаций, если известно, что дозы удобрений колеблются в пределах от 56 до 183 кг действующего вещества на 1 га, а урожайность рапса – от 16,9 до 30,4 ц/га. Для составления уравнения прямолинейной регрессии (11.8) по имеющимся данным необходимо решить систему нормальных уравнений. С этой целью прежде всего составим рабочую табл. 11.6.
Т а б л и ц а 11.6. Вспомогательные расчеты для определения параметров уравнения прямолинейной взаимосвязи
Подставим полученные в табл. 11.6 конкретные значения Σх=3283, Σу=640, Σху=91204 и Σх2=535692 в уравнения 11.9 и 11.10; получим: Для расчета коэффициента пропорциональности разделим уравнения 1,2 на числа, находящиеся при . Получим: Вычтем четвертое уравнение из третьего. Получим 21,3 – 27,7 = а+а+109,4в – 163,2 в; - 6,4 = - 53,8 в; в = 0,12. Теперь найдем параметр а, подставив значение в, например, в третье уравнение: 21,3 = а + 109,4. · 0,12; а=8,2. Уравнение прямолинейной регрессии, выражающее зависимость между дозами минеральных удобрений и урожайностью рапса, имеет следующий вид: (11.11) Коэффициент пропорциональности в показывает, что повышение доз внесения в почву минеральных удобрений на 1 кг действующего вещества может вызвать прирост урожайности рапса в сельскохозяйственных организациях 12 кг. Это свидетельствует о существенной роли минеральных туков в достижении высоких и устойчивых урожаев сельскохозяйственных культур.
Date: 2015-05-23; view: 481; Нарушение авторских прав |