Главная Случайная страница



Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Способ прямоугольного треугольника. Определение натуральной величины отрезка прямой линии и углов наклона прямой к плоскостям проекций





Построение проекций отрезка прямой общего и частного положения позволяет решать не только позиционные задачи (расположение относительно плоскостей проекций), но и метрические – определение длины отрезка и углов наклона к плоскостям проекций. Но эта задача может быть решена только в случае, если отрезок параллелен или перпендикулярен к одной или нескольким плоскостям. Рассмотрим способ решения такой задачи для отрезка общего положения.

Пусть дан отрезок АВ общего положения относительно плоскостей p1 и p2. АВ'В – прямоугольный треугольник (рис. 3.10), в котором катет АВ' = А1В1 (проекции отрезка АВ на плоскость p1), а катет ВВ' равен z – разности расстояний точек А и В до плоскости p1. Угол a в прямоугольном треугольнике АВ'В определяет угол наклона прямой АВ к плоскости p1.

Рассмотрим треугольник ВА'А (рис. 3.11), где катет ВА' равен проекции А2В2 (ВА' = А2В2), а второй катет АА' равен D y – разности расстояний точек А и В от плоскости p 2. Угол в прямоугольном треугольнике ВАА' определяет угол наклона прямой АВ к плоскости p2.

Таким образом, натуральная длина отрезка прямой общего положения определяется гипотенузой прямоугольного треугольника, у которого один катет равен проекции отрезка, а второй катет – алгебраической разности расстояний от концов отрезка до одной из плоскостей проекций.

Рис. 3.10 Рис. 3.11

14 Определение видимости прямых относительно плоскостей проекций (конкурирующие точки )

Для определения видимости прямых относительно плоскостей проекции используются конкурирующие точки. Рассмотрим комплексный чертеж скрещивающихся прямых а и b (рис. 4.1 и рис. 4.2). Определим, какая из прямых расположена выше другой (относительно плоскости p1) или ближе другой к наблюдателю (относительно плоскости p2). Для этого необходимо проанализировать положение конкурирующих точек С и D, принадлежащих этим прямым. Из рис. 4.1 следует, что при взгляде сверху по указанной стрелке С2 выше D2 относительно p1. Следовательно, точка С1, принадлежащая прямой а, будет видима, а точка D2, принадлежащая прямой b, (D1 – показана в скобках) будет не видима. Из двух конкурирующих точек M и N, принадлежащих скрещивающимся прямым а и b (рис. 4.2), относительно плоскости p2, видимой будет точка М2, так как М1 расположена ближе к наблюдателю, что видно при взгляде спереди по указанной стрелке, а точка N2 будет не видима, поэтому она показана в скобках.



Рис. 4.1 Рис. 4.2







Date: 2015-04-23; view: 418; Нарушение авторских прав



mydocx.ru - 2015-2021 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию