Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Метод электрокоагуляции





Метод наиболее пригоден для выделения хрома. Сущность метода заключается в восстановлении Cr(VI) до Cr(III) в процессе электролиза с использованием растворимых стальных электродов. При прохождении растворов через межэлектродное пространство происходит электролиз воды, поляризация частиц, электрофорез, окислительно-восстановительные процессы, взаимодействие продуктов электролиза друг с другом.

Суть протекающих при этом процессов заключается в

следующем: при протекании постоянного электрического тока через хромсодержащие растворы гальваношламов, анод подвергается электролитическому растворению с образованием ионов Fe, которые, с одной стороны, являются эффективными восстановителями для ионов хрома (VI), с другой - коагулянтами:

Cr 2O7 2- + 6Fe 2+ 6Fe 2+ + 2Cr3+

На катоде выделяется газообразный водород, что ведет к

выщелачиванию раствора и созданию таким образом условий для выделения гидроксидов примесных металлов, также происходит процесс электрохимического восстановления по реакциям:

2H + + 2e H2

Cr2O7 2- + 14H + 2Cr 3+ + 7H2O

Находящиеся в растворе ионы Fe +3, Fe 2+,Cr+3 гидратируют с образованием гидроксидов Fe(OH)3,Fe(OH)2,Cr(OH)3. Образующиеся гидроксиды железа являются хорошими коллекторами для осаждения гидроксидов примесных металлов и адсорбентами для других металлов.

Электрокоагуляторы внедрены на ряде предприятий. Разработчики: электрокоагуляционная установка (ЦНТИ, Петропавловск-Камчатский); установка “Лоста” (НИЦ “Потенциал”, Ровно); напорный электрокоагулятор “Эко” (трест “Цветводоочистка”, Екатеринбург); электрокоагулятор (НИИ “Стрела”, Тула); электрокоагулятор (ЦНИИСТ, Севастополь),ОАО “Диод” (Владимир) и др.

Электрокоагуляционная установка на ОАО “Диод” состоит из трехсекционной гальванической ванны, выпрямителя ВАКР-1600-12У4 и промежуточной емкости с двумя насосами для откачки обезвреженных стоков на отстойник. По мере пропускания постоянного тока через сточные воды в электролизной ванне в железными электродами происходит анодое растворение электродов, образующиеся при этом ионы 2-х валентного железа восстанавливают ионы хрома шестивалентного до трехвалентного. Одновременно происходит гидролиз ионов железа и вторичных соединений с образованием нерастворимых гидроксидов Fe(OH)2,Fe(OH)3,Cr(OH)3 и др. Процесс является неперерывным, под напряжением 12В и плотности тока 0.5 – 1 А/дм2. Фильтрация сточной воды производится на нутч-фильтре.

Достоинства метода

1) Очистка до требований ПДК от соединений Cr (VI).

2) Высокая производительность.

3) Простота эксплуатации.

4) Малые занимаемые площади.

5) Малая чувствительность к изменениям параметров

процесса.

6) Получение шлама с хорошими структурно-механическими

свойствами.

Недостатки метода

1) Не достигается ПДК при сбросе в водоемы рыбохозяйственного назначения.

2) Значительный расход электроэнергии.

3) Значительный расход металлических растворимых

анодов.

4) Пассивация анодов.

5) Невозможность извлечения из шлама тяжелых

металлов из-за высокого содержания железа.

6) Невозможность возврата воды в оборотный цикл

из-за повышенного солесодержания.

7) Потребность в значительных площадях для шламоотвалов.

8) Необходимость предварительного разбавления стоков до

суммарной концентрации ионов тяжелых металлов 100 мг/л.

Электролиз. (окисление)

В процессах электрохимическое окисление протекает на положительном электроде - аноде, которому ионы отдают электроны. Вещества, находящиеся в сточных водах, полностью распадаются с образованием более простых и нетоксичных веществ, которые можно удалять другими методами. В качестве анодов используют различные электрически нерастворимые вещества: графит, магнетит, диоксиды свинца, марганца и рутения, которые наносят на титановую основу. Катоды изготавливают из молибдена, сплава железа с вольфрамом, сплава вольфрама с никелем, из графита, нержавеющей стали и других металлов, покрытых молибденом, вольфрамом или их сплавами. Метод используется на многих предприятиях.

Применению электролиза до последнего времени препятствовала низкая производительность аппаратов с плоскими электродами. Перспективы решения этой проблемы открылись с разработкой и внедрением в практику достаточно простых и надежных электролизеров с проточными объемно-пористыми волокнистыми электродами. Они позволяют ускорить процесс извлечения металлов более чем в 100 раз за счет высокой удельной поверхности и повышенного коэффициента массопередачи (до 0.05 – 0.1 м3/с). Применяются и другие типы аппаратов с развитой электродной поверхностью, например псевдоожиженного типа, разрабатываемые в Киеве и Санкт-Петербурге.

Работы в этом направлении также требуют дальнейшего развития: поиск путей увеличения доступной электролизу внутренней поверхности электродов; оптимизация стадии регенерации осажденного металла и анодных процессов; разработка более компактных, дешевых и экономичных электролизеров, а также стойких и дешевых анодных материалов.

Разработаны электролизеры типа Э-ЭУК, Е-91А, ЭПУ (ВПТИЭМП), модуль - МОПВ (НИТИАП, Нижний Новгород), регенераторы (ЦМИ “Контакт”, Пермь).

В США разработана конструкция электролизера для извлечения тяжелых металлов, в котором однородный поток мельчайших пузырьков воздуха, направленный перпендикулярно поверхности катода, разрушает примыкающий к катоду диффузный слой электролита. Это резко улучшает массообмен в электролите и повышает выход по току. Также в США широко используется электролизер, оборудованный биполярными электродами из углеродистой стали. Расход электроэнергии составляет 10 кВт на 1 кг тяжелых металлов. При содержании тяжелых металлов более 50 мг/л электрохимическая обработка осуществляется в несколько стадий. Концентрация вредных примесей тяжелых металлов после очистки не превышает по каждому из них 0.05 мг/л.

В Днепропетровском химико-технологическом институте предложено сточные воды обрабатывать в электролизере с растворимым анодом из пористого титана в присутствии замещенного амида иминосульфиновой кислоты формулы C6H5S(=NSO2C6H5)NHSO2C6H5.Размеры пор пористого титана 20 – 300 мкм, общая пористость 20 – 40 %.

Приведена схема одноступенчатой электролитической установки для удаления тяжелых металлов (удаление 90% металлических ионов) из сточных вод. В бездиафрагменном электролизере используются 2 насыпных катода, между которыми расположен пластинчатый анод. Катод состоит из гранул, изготовленных из материала, который плохо сцепляется с осаждаемыми металлами и поэтому осаждаемый металл выпадает на дно в виде порошка.

Достоинства метода

1) Отсутствие шлама.

2) Незначительный расход реагентов.

3) Простота эксплуатации.

4) Малые площади, занимаемые оборудованием.

5) Возможность извлечения металлов из концентрированных

стоков.

Недостатки метода

1) Не обеспечивает достижение ПДК при сбросе в водоемы рыбохозяйственного назначения.

2) Аноды из дефицитного материала.

3) Неэкономичность очистки разбавленных стоков

Date: 2015-05-22; view: 875; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию