Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Создание инверсной населенности в полупроводниках






Рассмотрим собственный полупроводник. В условиях термо-динамического равновесия валентная зона полупроводника полностью заполнена электронами, а зона проводимости пуста. Предположим, что на полупроводник падает поток квантов электромагнитного излучения, энергия которых превышает ширину запрещенной зоны hv>Eg. Падающее излучение поглощается в веществе, так как образуются электронно-дырочные пары. Одновременно с процессом образования электронно-дырочных пар протекает процесс их рекомбинации, сопровождающийся образованием кванта электромагнитного излучения. Согласно правилу Стокса - Люммля энергия излученного кванта меньше по сравнению с энергией генерирующего кванта. Разница между этими энергиями преобразуется в энергию колебательного движения атомов кристаллической решетки. В условиях термодинамического равновесия вероятность перехода с поглощением фотона (валентная зона – зона проводимости) равна вероятности излучательного перехода (зона проводимости - валентная зона).

Предположим, что в результате какого-то внешнего воздействия полупроводник выведен из состояния термодинамического равновесия, причем в нем созданы одновременно высокие концентрации электронов в зоне проводимости и дырок в валентной зоне. Электроны переходят в состояние с некоторой энергией Fn вблизи потолка валентной зоны. Рассматриваемая ситуация иллюстрируется диаграммами, приведенными на.

рис. 1

Так как все состояния вблизи дна зоны проводимости заполнены электронами, а все состояния с энергиями вблизи потолка валентной зоны заполнены дырками, то переходы с поглощением фотонов, сопровождающиеся увеличением энергии электронов становятся невозможными. Единственно возможными переходами электронов в полупроводнике в рассматриваемых условиях являются переходы зона проводимости - валентная зона, сопровождающиеся рекомбинацией электронно-дырочных пар и испусканием электромагнитного излучения. В полупроводнике создаются условия, при которых происходит усиление электромагнитной волны. Иными словами, коэффициент поглощения получается отрицательным, а рассматриваемая ситуация отвечает состоянию с инверсной плотностью населенности.

Поток квантов излучения, энергия которых находится в пределах от

hv=Ec-Ev до hv=Fn-Fp, распространяется через возбужденный полупроводник беспрепятственно.

Для реализации процесса излучательной рекомбинации необходимо выполнить два условия. Во-первых, электрон и дырка должны локализоваться в одной и той же точке координатного пространства. Во-вторых, электрон и дырка должны иметь одинаковые по значению и противоположно направленные скорости. Иными словами, электрон и дырка должны быть локализованы в одной и той же точке k-пространства. Так как импульс образующегося в результате рекомбинации электронно-дырочной пары фотона значительно меньше по сравнению с квазиимпульсами электрона и дырки, то для выполнения закона сохранения квазиимпульса требуется обеспечить равенство квзиимпульсов электрона и дырки, участвующих в акте излучательной рекомбинации.

Оптическим переходам с сохранением квазиимпульса соответствуют вертикальные в k-пространстве (прямые) переходы. Сохранение квазиимпульса в процессе излучательного перехода может рассматриваться как квантомеханическое правило отбора (в том случае, когда в акте излучательной рекомбинации не принимают участие третьи частицы, например, фононы или атомы примесей). Невертикальные в k-пространстве (непрямые) переходы имеют значительно меньшую вероятность по сравнению с прямыми переходами, так как в этом случая требуется сбалансировать некоторый разностный квазиимпульс dk (рис. 2).

Таким образом, для получения излучательной рекомбинации необходим прямозонный полупроводник, например, GaAs. Вообще, придерживаясь строгой теории можно доказать, что инверсная населенность возможна лишь при условии Ec-Eg<Fn-Fp.

Широко используемыми на практике способами создания инверсной населенности являются: 1) возбуждение за счет инжекции неосновных носителей через p-n - переход; 2) возбуждение электронным лучом; 3) возбуждение в сильном электрическом поле.

Рубиновые “спички”.


Первым в оптическом диапазоне волн заработал лазер на розовом рубине, испускающий ярко – красные световые лучи с длиной волны около 0,7мк. По химическому составу он представлял собой корунд с примесью оксида хрома Сг2О3 (0,05%). При достижении инверсной населенности использовались возбужденные состояния ионов Сг3+. Концентрация ионов хрома в кристалле розового ру­бина первого лазера составляла 1,62-1019 см-3. Для ионов хрома характерна так называемая трехуровневая схема расположения энергетических состояний. Инверсная населенность в рубине достигалась оптическим методом при по­мощи мощной импульсной ксеноновой лампы. Под воздействием ультрафиолетового излучения лампы ионы хрома возбуждаются с вероятностью р В и переходят на систему уровней 3. Отсюда они могут перейти или снова на уровень 1 с вероятностью А + р В или на уровень 2 в результате без излучательного перехода с вероятностью S - Энергия, выделяющаяся при таком переходе, идет на нагревание кристалла. Состояние 2 для ионов хрома является метастабильным, оно обусловливает фосфорес­ценцию рубина в красной области спектра. При определенной концентрации ионов хрома и мощности излучения, возбуждаю­щего ионы хрома (она называется мощностью «накачки»), уда­ется создать такое распределение ионов по уровням, при кото­ром N2 > N1, т.е. получить инверсное состояние. Между уровнями 1 и 2 возможны переходы, подобные переходам в двухуровневой системе.


В качестве системы, обеспечивающей обратную связь, приме­нялся по предложению А.М.Прохорова оптический резонатор Фабри-Перо. Зеркала резонатора 3 и 3 наносили непосредст­венно на торцы тщательно отполированного (с точностью до λ/8) рубинового стержня. Кристалл рубина помещали вдоль оси спи­ральной лампы накачки Л. В более поздних конструкциях применялись иные схе­мы оптического возбуждения кристалла, позволяющие улучшить условия освещения рубина. Например, использовались зеркаль­ные отражатели, имеющие форму эллиптических цилиндров. В одном из фокусов такого отражателя помещался кристалл рубина Р в другом - цилиндрическая лампа накачки Л. Рубиновый лазер работает в импульсном режиме, генерируя вол­ны длиной 0,68 мкм.







Date: 2015-05-22; view: 660; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.01 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию