Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Диффузия в газах
Предположим, что в единице объёма двухкомпонентной газовой смеси содержится n1 молекул одного вида и n2 молекул другого вида. Полное число молекул в единице объёма равно n = n1 + n2. Допустим, что в направлении оси х создаются градиенты концентраций , причём . Тогда, , так что n, а, следовательно, и Р постоянны (в силу Р = nkT). В этом случае газодинамических потоков не возникает. Однако вследствие теплового движения молекул будет происходить процесс выравнивания концентраций, сопровождающийся переносом массы каждой из компонент в направлении убывания её концентрации. Этот процесс носит название диффузии. Диффузия наблюдается так же в жидких и твёрдых телах. Поток молекул i – го вида через перпендикулярную к оси х поверхность S определяется выражением ,где D – коэффициент пропорциональности, называемый коэффициентом диффузии. Знак минус указывает на то, что поток молекул направлен в сторону убывания концентрации. Умножив обе части этого равенства на массу молекулы i – го вида mi, получим выражение для потока массы i – ой компоненты: , где ri = nimi – парциальная плотность i – ой компоненты. Эти формулы представляют собой эмпирические уравнения диффузии. Их называют уравнением Фика. Получим уравнение диффузии, основываясь на молекулярно-кинетических представлениях, причём для упрощения расчётов будем считать, что молекулы обеих компонент мало отличаются друг от друга по массе (m1» m2» m) и имеют практически одинаковые эффективные диаметры (d1» d2» d). В этом случае молекулам обеих компонент можно приписывать одинаковую среднюю скорость теплового движения < u >, а среднюю длину свободного пробега вычислить по формуле , где n = n1 + n2. Пусть изменение концентрации первой компоненты вдоль оси х даётся функцией n1 = n1 (x). Поток молекул первой компоненты летящих через поверхность S в положительном направлении оси х, равен , а соответствующий поток молекул первой компоненты, летящих в отрицательном направлении оси х равен разности этих потоков . Таким образом, мы пришли к уравнению диффузии Фика, причём получили для коэффициента диффузии выражение . Date: 2015-05-18; view: 582; Нарушение авторских прав |