Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Волнующая возможность





В 1987 г. Шин-Тун Яу и его студент Ганг Тиан, работающий сейчас в Массачусетсом технологическом институте, сделали интересное математическое наблюдение. Используя хорошо известный математический прием, они обнаружили, что одни многообразия Калаби—Яу можно преобразовать в другие путем протыкания их поверхности и сшивания образовавшегося отверстия согласно строго определенной математической процедуре2). Грубо говоря, они обнаружили, что внутри исходного пространства Калаби—Яу можно выделить двумерную сферу определенного вида (рис. 11.2). (Двумерная сфера аналогична поверхности надувного мяча, который, как и все знакомые нам объекты, трехмерен. Здесь, однако, мы говорим только о поверхности, не учитывая толщину материала, из которого сделан мяч, а также пространство внутри него. Точки на поверхности мяча определяются двумя числами, «широтой» и «долготой», аналогично тому, как определяются координаты на поверхности Земли. Вот почему поверхность мяча, как и поверхность упоминавшегося в предыдущих главах Садового шланга, является двумерной.) Далее они рассмотрели стягивание сферы в одну точку; этот процесс показан на рис. 11.3. Как и все последующие рисунки этой главы, он упрощен с целью наглядности изображения наиболее важного «куска» пространства Калаби—Яу: но вы должны помнить, что такие преобразования происходят внутри несколько большего пространства Калаби—Яу, подобного изображенному на рис. 11.2. И, наконец, Тиан и Яу рассмотрели случай, когда в точке сжатия пространство Калаби—Яу слегка надрывается (рис. 11.4 а), раскрывается и перестраивается в другую шарообразную фигуру (рис. 11.4 б), которую затем снова можно раздуть до нормального размера (рис. 11.4 в и 11.4 г).

Математики называют последовательность таких действий флоп-перестройкой*) Все происходит так, как будто надувной мяч «выворачивается» наизнанку внутри другого пространства Калаби—Яу. Тиан, Яу и другие математики показали, что при определенных условиях новое многообразие Калаби— Яу (см. рис. 11.4 г), будет топологически отличным от исходного (рис. 11.3 а). То есть, выражаясь привычным языком, не существует никакого способа деформировать исходное пространство Калаби—Яу, показанное на рис. 11.3 а, в конечное пространство Калаби—Яу, показанное на рис. 11.4 г, не разрывая на некотором промежуточном этапе структуры пространства Калаби—Яу.

Рис. 11.2.В выделенной области внутри пространства Калаби—Яу находится сфера Рис. 11.4.При разрыве перетяжки пространства Калаби—Яу возникает сфера, которая сглаживает его поверхность. Исходная сфера рис. 11.3 оказывается «перестроенной»
Рис. 11.3.Сфера внутри пространства Калаби—Яу сжимается в точку, приводя к перетяжке в ткани пространства. На этом и следующих рисунках для простоты показана лишь часть всего пространства Калаби—Яу

*) В оригинале flop-transition. Некоторые термины, используемые автором в этой и следующих главах, не являются общепринятыми (и/или еще не имеют русского эквивалента): мы подошли к обсуждению вопросов, касающихся последних достижений в физике и математике. — Прим. перев.

 


178 Часть IV. Теория струн и структура пространства-времени

С точки зрения математики процедура Яу и Тиана очень интересна, так как позволяет получить новые пространства Калаби—Яу из уже известных. Но действительная сила процедуры проявляется в области физики, где в этой связи возникает волнующий вопрос: если забыть об абстрактном характере данной математической процедуры, может ли в природе иметь место изображенная на рис. 11.3 а - 11.4 г последовательность превращений? Может ли произойти так, что вопреки предсказаниям теории Эйнштейна структура пространства способна рваться и затем восстанавливаться подобно тому, как описано выше?







Date: 2015-05-17; view: 410; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.01 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию