Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Методы дедукции и индукции





 

Предельная универсальность принятой монопарадигмы объясняется тем, что последняя содержит весьма общие философские концепции - объективизм, детерминизм, необходимость, которые фактически реализуются с помощью не менее объемлющих физических концепций, таких, как Вселенная, вещество его поведение, взаимодействие. Эти физические концепции играют в ОТ роль коммуникативного уровня, связывающего философию с собственно научным уровнем методологии. Последовательная расшифровка и детализация физических концепций позволяют в конечном итоге опуститься до уровня конкретных свойств изучаемого реального явления.

Чтобы представить себе путь, который надо пройти от физических концепций до конкретных свойств, достаточно рассмотреть типичный пример изучения какого-либо явления природы.

Изучение обычно начинается с выбора количественных Законов, или принципов, которым подчиняется данное явление. Например, при определении теплопотерь через стенку в качестве количественных принципов используются законы теплопроводности Фурье и теплоотдачи на поверхности тела Ньютона. Затем высказывается предположение (качественная модельная гипотеза) о конкретном способе (схеме) приложения этих законов к изучаемому явлению. Например, объектом приложения может служить бесконечно длинный круглый полый цилиндр определенных размеров - в данном простейшем случае это и есть качественная модельная гипотеза. В ходе рассуждений принятая качественная модель согласовывается с выбранными физическими принципами. В результате получаются количественные соотношения, позволяющие вычислить конкретные свойства интересующего нас явления, в частности найти количество переданного через стенку тепла. Теоретически вычисленные свойства сопоставляются с измеренными свойствами реального явления. По степени расхождения расчетных и опытных данных можно судить о добротности проведенных рассуждений.

Такова типичная последовательность перехода от количественных принципов через качественные модельные гипотезы к конкретным свойствам явления. Принципы, в свою очередь, находятся путем соответствующей расшифровки и детализации физических концепций. В совокупности перечисленные звенья рассуждений выстраиваются в стройную цепочку, которая выражает собой не что иное, как метод дедукции, то есть Метод рассуждений от общего к частному, от общих положений к конкретным выводам.

Таким образом, впервые удается развить теоретический метод дедукции в его наиболее общей форме, ибо рассуждения простираются от весьма общих философских концепций и до выраженных числом свойств конкретного явления. При этом парадигма по необходимости дополняется следующими звеньями цепочки: количественные принципы, качественные гипотезы, конкретные свойства явления.

При индуктивном способе рассуждений вначале накапливаются конкретные факты (данные), относящиеся к свойствам изучаемого явления. Затем эти данные обобщаются в форме качественного предположения о сущности физического механизма явления, то есть высказывается модельная гипотеза. На основе изучения модели делается обобщающий вывод о существовании неких количественных физических принципов, управляющих явлением. Справедливость найденных принципов проверяется на множестве других аналогичных явлений. Путем обобщения физических принципов - формулируются соответствующие физические, а затем и философские концепции теории. Таков схематический путь рассуждений, от частного к общему.
Как видим, в общем случае цепочка рассуждений должна включать в себя следующие основные звенья.

 

1. Вселенная.
2. Объективизм, детерминизм, необходимость.
3. Вещество и его поведение, в том числе вещество и поведение взаимодействия.

4. Вещество первично, его поведение вторично.
5. Количественные принципы.
6. Качественные гипотезы.
7. Конкретные свойства явления.

 

Движение по этой цепочке в прямом направлении соответствует общему методу дедукции, в обратном - общему методу индукции. Оба способа рассуждений - дедуктивный и индуктивный - осуществляются на одном или нескольких языках одновременно. Чаще всего в рассуждениях используются словесный, математический, алгоритмический и т.д. языки.

Так я расшифровываю общие методы дедукции и индукции. К этому следует добавить лишь некоторые пояснения по поводу содержания пятого и шестого звеньев цепи, от которых в конечном итоге зависит добротность проведенных рассуждений, то есть точность согласования теоретических и опытных данных.

Под количественными принципами понимаются законы, которые в наиболее концентрированном и абстрактном виде с количественной стороны определяют самые общие, важные характерные свойства изучаемого явления. Примерами могут служить законы теплопроводности Фурье, всемирного тяготения Ньютона и т.д.; первый количественно характеризует процессы теплопроводности, а второй - процессы гравитационного притяжения тел. Это законы частные, сфера их действия ограничена определенными конкретными явлениями. Но существуют законы и более общие. Наиболее общие, универсальные и достоверные количественные принципы, которые обнаруживаются на первом - начальном - этапе эволюции вещества и его поведения, я буду именовать началами. Примером может служить закон сохранения энергии. Особенность начал заключается в том, что им подчиняются вещество и его и поведение на всех этапах эволюции, включая самые сложные. Начала играют роль абсолютных истин, которые не могут быть опровергнуты в будущем в ходе исторического развития науки, им обязана подчиняться вся природа.


Из сказанного должно быть ясно, что при изучении какого-либо конкретного явления и правильном выборе количественных принципов они не могут служить источником ошибок в рассуждениях, особенно если речь идет о началах. Причиной ошибок может быть либо неправильный выбор принципов (например, распространение законов, которым подчиняются сложные формы явлений эволюционного ряда, на более простые формы), в том числе неполнота их списка, либо ошибочность самих принципов, что также случается. Но главным источником Ошибок и погрешностей в рассуждениях, как правило, являются качественные, или модельные, гипотезы. Модельные гипотезы призваны определять физический механизм (структуру, схему) изучаемого явления. В цепи рассуждений они перекидывают мост между количественными принципами и детальными свойствами конкретного явления.

Модельные гипотезы характеризуют наши представления сущности физического механизма изучаемого явления, то, есть наше понимание этого явления. В ходе исторического развития науки имеющиеся модельные представления непрерывно изменяются и уточняются, ибо они отражают упомянутый механизм лишь с большим или меньшим приближением, отвечающим данному уровню знаний и никогда не способны, отразить его абсолютно точно. Иными словами, модельные представления всегда суть относительные истины, поэтому для них естественно было принять наименование гипотез.

Модельные гипотезы в равной мере необходимы при изучении макромира, мегамира, микромира и т.д. В общем случае модельные гипотезы могут быть самыми разнообразными. Например, выделение из всей совокупности тел природы данного изучаемого тела (системы) уже есть определенная простейшая модельная гипотеза. Одну такую простейшую макромодельную гипотезу мы уже упомянули, когда говорили о передаче теплоты через стенку. Ее можно уточнить, если вместо бесконечно длинного цилиндра рассматривать цилиндр конечной длины, но тогда все рассуждения усложняются, хотя задача и выигрывает в точности. Еще более задача уточняется и усложняется, если учесть взаимное влияние теплового, кинетического, электрического и т.д. явлений, однако при этом приходится обращаться уже и к другим количественным принципам.


К более сложным моделям, охватывающим одновременно несколько тел. приходится прибегать, например, при попытках описать устройство Солнечной системы. В качестве иллюстрации таких мегамодельных гипотез можно сослаться на геоцентрическую и гелиоцентрическую теории Птолемея и Коперника соответственно.

Модельные гипотезы усложняются многократно при переходе к микромиру. Характерным примером может служить микромодель атома. Первоначально атом рассматривался как мельчайшая неделимая частица. Затем обсуждалась модель Дж. Дж. Томсона, представлявшая собой смесь положительных и отрицательных зарядов ("сливовый пудинг"). На смену сливовому пудингу пришла модель Резерфорда, в которой положительное ядро окружено облаком из отрицательно заряженных электронов. Эта модель трансформировалась в планетарную модель Бора, где вокруг положительного ядра движутся по определенным орбитам электроны. Сейчас обсуждаются более сложные модели, и этой смене моделей в принципе не может быть конца.

Модельные гипотезы находятся различными способами. Их можно высказать умозрительно, не опираясь на опытные данные; такой подход характерен для мыслителей древности. Модельные гипотезы могут явиться результатом обобщения мышлением (опосредствования) наблюдений, касающихся свойств данного конкретного явления. Нет сомнений, что этот способ определения модельных гипотез предпочтительнее предыдущего. Наконец, модельные представления могут быть "угаданы" с помощью математических уравнений. Иными словами, при математическом подходе качественной моделью физического явления служит формула. Этот частный способ установления гипотез, именуемых математическими, широко распространен в настоящее время; вспомним, например, угаданные уравнения Гейзенберга, Дирака, Фейнмана, Шредингера, за что перечисленные авторы были удостоены Нобелевских премий. Математическая формула-модель обладает рядом специфических особенностей и недостатков; в частности, любая формула есть носитель определенной математической идеи, сущность которой не обязательно совпадает с сущностью изучаемого физического явления, кроме того, формула-модель не наглядна. В результате возникает проблема интерпретации "угаданного" уравнения, как это было, например, в случае Бора, статистически интерпретировавшего волновую функцию и получившего за это Нобелевскую премию.

Приведенные рассуждения наглядно свидетельствуют об ограниченности всякой модельной гипотезы: во-первых, она недолговечна и, во-вторых, качественно характеризует только данное конкретное явление. Частный характер модели резко ограничивает сферу ее применения. Например, мы не можем модель явления обращения планет вокруг Солнца распространить на явление теплопроводности или электропроводности, и, наоборот, каждое конкретное явление должно быть сопоставлено со своей особой модельной гипотезой.

Все сказанное позволяет четко уяснить относительную роль различных звеньев рассуждений при попытках замкнуть парадигму на конкретные свойства явления. При этом также важно понимать, что два перечисленных звена - принципы и гипотезы - принципиально необходимы для рассуждений. Например, цепочку невозможно замкнуть, если отсутствуют принципы. То же самое получается, когда отсутствуют гипотезы.

Становится понятным прежнее утверждение о том, что на каждом данном этапе развития науки мировоззренческие концепции (парадигма) остаются неизменными, а все остальные детали любой конкретной теории, базирующейся на этой парадигме, способны изменяться и уточняться. Например, известные изменения, могут претерпеть количественные принципы. Но сильнее всего подвержены изменениям качественные гипотезы. При этом возможные вариации тем существеннее, чем дальше мы отходим от простейшего явления эволюционного ряда [ТРП, стр.23-27].

 

 







Date: 2015-05-09; view: 537; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию