Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Новые направления генетических исследований и методов лечения
Сегодня быстро продвигаются вперед как технология генетических исследований, так и наше понимание генетических детерминант. Помимо идентификации, составления каталога и генетической карты многих генных аномалий, и конечно, проникновения внутрь генома человека генетическая технология продолжает усовершенствоваться и расширяться, включая в свою сферу лечение генетических нарушений. Базисом большинства из этих продвижений в рамках возникающей дисциплины, называющейся биоинформатикой, которая представляет собой соединение биологии и компьютерной науки, является технология рекомбинации ДНК. Техники рекомбинации ДНК появились в 80-е годы XX века и совершили революцию в изучении молекулярной генетики. Под этим термином скрывается целый ряд высокотехнологичных процедур, в ходе которых ДНК извлекается из ядра клетки и сначала расщепляется (рассекается) на сегменты избранными энзимами. Сейчас у исследователей есть несколько таких энзимов (вытяжек из бактерий), расщепляющих ДНК на особые части и сохраняющих при этом ее целостность. Затем полученные фрагменты присоединяются к одному из ряда самореплицирующихся элементов, которые исследователи также получают из таких организмов, как бактерии. Они комбинируются с ДНК, формируя, по сути, функциональные генетические клоны, способные производить протеины. Затем они помещаются в особые бактериальные клетки, предназначенные для поддержания жизни и выращивания в них получившейся искусственной культуры. Дальнейшие шаги зависят от цели исследования. Клонированную ДНК можно изучать для выяснения того, какой протеин она производит (нормальный или мутирующий), что полезно для определения основы генетических аномалий. Другой путь — клонированную ДНК помечают дополнительной ДНК-«зондом» и объединяют с интактной хромосомой для выяснения, в каком ее участке она задержится, что позволяет составить карту местонахождения генов в хромосомах (за одну попытку на «карту» наносится местоположение — локус одного гена). Кроме того, клонированную ДНК комбинируют со специально созданной синтетической ДНК для изучения специфических последовательностей нуклеотидов, что постепенно открывает дорогу для идентификации нуклеотидных комбинаций, вызывающих мутацию протеинов. Также клонированные гены используются в генной терапии и при клонировании целых организмов. Date: 2015-05-08; view: 419; Нарушение авторских прав |