Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Ближайшее будущее





(с настоящего момента до 2030 г.)

 

Внесолнечные планеты

 

Одним из самых поразительных достижений космической программы до сих пор было исследование космоса при помощи роботов, невероятно расширившее горизонты человечества.

Первой и главной целью роботизированных миссий будущего должен стать поиск в космосе землеподобных планет, пригодных для жизни, — священного Грааля всей космической науки. До сих пор при помощи космических и наземных телескопов ученым удалось обнаружить в далеких звездных системах около 500 планет; теперь новые планеты находят постоянно, с интервалом в одну-две недели. Жаль только, что современные инструменты позволяют обнаруживать исключительно гигантские планеты вроде Юпитера, жизнь на которых — по крайней мере, такая, какой мы ее знаем, — невозможна.

Чтобы найти очередную планету, астрономы ищут звезду, в движении которой наблюдаются легкие колебания. Скорее всего, такая звезда представляет собой систему двух тел, вращающихся вокруг общего центра масс; одно из тел — звезда, ясно видимая в телескоп, другое — планета-гигант размером с Юпитер, свет от которой (отраженный) слабее звездного примерно в миллиард раз. Там, где местное светило и планета-гигант вращаются вокруг общего центра масс, земные телескопы различают лишь слегка колеблющуюся звезду. При помощи этого метода ученым удалось обнаружить в космосе не одну сотню газовых гигантов, но для поиска небольших планет земного типа он слишком груб.

Самая маленькая планета, которую удалось обнаружить при помощи наземных телескопов, была зарегистрирована в 2010 г.; по массе она превосходит Землю в 3–4 раза. Примечательно, что эта «сверхземля» — первая из обнаруженных планет, находящаяся в зоне жизни своей звезды, т. е. на расстоянии, которое допускает существование на ней жидкой воды.

Ситуация изменилась с запуском в 2009 г. американского космического телескопа Kepler, а в 2006 г. — французского аппарата COROT. Эти обсерватории занимаются поиском крохотных флуктуаций в блеске звезд, которые могут быть вызваны прохождением небольшой планеты перед диском своей звезды, — в этот момент ее свет в какой-то небольшой степени блокируется. Тщательно просканировав тысячи звезд в поисках этих крохотных изменений яркости, Kepler и COROT смогут, вероятно, обнаружить в дальнем космосе сотни землеподобных планет. Затем каждую из них можно будет проанализировать на предмет наличия там жидкой воды — пожалуй, самого ценного вещества во Вселенной. Вода — универсальный растворитель и волшебный котел, в котором, вероятно, возникла первая ДНК. Если на некоторых экзопланетах будут обнаружены океаны из жидкой воды, наши представления о жизни во Вселенной могут измениться.

Журналисты — охотники за скандалами говорят: «Следуй за деньгами», но астрономы, занимающиеся поисками внеземной жизни, скажут иначе: «Следуй за водой».

Позже Kepler будет заменен другими, более чувствительными космическими аппаратами, такими как «Искатель землеподобных планет» (TPF)[32]. Хотя дата запуска этого аппарата откладывалась уже несколько раз, он по-прежнему остается наилучшим кандидатом на продолжение в будущем исследований Kepler.

Предполагается, что оптика на «Искателе» будет намного лучше и искать в космосе двойников Земли ему станет проще. Во-первых, на нем будет вчетверо большее по размеру и в сто раз более чувствительное[33]зеркало, чем на Космическом телескопе имени Хаббла. Во-вторых, он будет снабжен инфракрасными датчиками, при помощи которых можно ослабить излучение звезды в миллион раз и выявить, соответственно, присутствие рядом с ней тусклой планеты. (Чтобы добиться такого эффекта, аппарат измеряет излучение звезды на двух разных длинах волн и определенным образом комбинирует их, чтобы они в точности компенсировали друг друга; таким образом можно как бы убрать с картинки лишнее изображение — звезду.)

Итак, в самом недалеком будущем у нас появится каталог из нескольких тысяч планет, из которых, возможно, несколько сотен окажутся весьма похожими на Землю по размеру и составу. Это, в свою очередь, подогреет интерес к отправке в дальний космос зондов для исследования таких планет. Множество ученых сосредоточат свои усилия на том, чтобы определить, есть ли на этих планетах океаны из жидкой воды и какое-то радиоизлучение — возможно, сигналы разумных форм жизни.

 

Европа — вне «зоны жизни»

 

Надо заметить, что и в пределах Солнечной системы имеется весьма интересный и соблазнительный объект для будущих исследований: Европа. Много десятилетий считалось, что жизнь в любой солнечной системе возможна только в так называемой «зоне жизни», т. е. на определенном расстоянии от светила, где на планетах не слишком жарко и не слишком холодно и где существуют подходящие для обитания условия. На Земле так много драгоценной жидкой воды, потому что она находится от Солнца на правильном расстоянии. На планете вроде Меркурия жидкая вода мгновенно вскипела бы, поскольку Меркурий находится слишком близко к Солнцу. На Юпитере — замерзла бы, так как он расположен слишком далеко. А поскольку первые молекулы ДНК и белков зародились, скорее всего, именно в жидкой воде, долгое время все были уверены, что жизнь в Солнечной системе может существовать только на Земле и, возможно, еще на Марсе.

Однако астрономы ошибались. После того как мимо Юпитера и его лун пролетели два межпланетных аппарата «Вояджер», стало очевидно, что в нашей системе существует еще одно место, где могла бы с комфортом существовать жизнь: под ледяным покровом лун Юпитера. Очень быстро внимание астрономов привлекла Европа, один из четырех крупнейших спутников Юпитера, открытых в 1610 г. Галилеем. Поверхность этого спутника всегда покрыта ледяной коркой, зато под ней — жидкий океан. Океаны на Европе намного глубже земных, поэтому считается, что по суммарному объему они превосходят океаны Земли вдвое.

Ученые испытали настоящий шок, осознав, что в Солнечной системе существует еще один серьезный источник энергии, помимо Солнца. Поверхность Европы под ледяной коркой непрерывно греют приливные силы. По мере движения спутника вокруг планеты-гиганта ее притяжение сплющивает луну в разных направлениях, вызывая трение глубоко в ядре. Трение порождает тепло, которое, в свою очередь, плавит лед и обеспечивает существование стабильного океана жидкой воды.

Это открытие означает, что луны далеких от Солнца газовых гигантов могут оказаться более интересными объектами для исследования, чем сами планеты. (Вероятно, именно поэтому Джеймс Кэмерон выбрал в качестве места действия фантастического фильма «Аватар» 2009 г. спутник газового гиганта, схожего по размерам с Юпитером.) Внезапно число мест во Вселенной, потенциально подходящих для жизни, многократно умножилось.

Результатом этого замечательного открытия стал новый проект — «Миссия в систему Юпитер — Европа» (EJSM), запуск которого предварительно запланирован на 2020 г[34]. Предполагается, что аппарат выйдет на орбиту Европы и, возможно, приземлится на нее. Ученые, конечно, мечтают изучить Европу поподробнее и переправить на нее много сложной техники. Уже разработано немало методов поиска жизни подо льдом. Один из возможных проектов — Ice Clipper; авторы предлагают отправить к Европе орбитальный аппарат, который будет сбрасывать на лед металлические шары, а затем тщательно исследовать поднятые вверх тучи пара и обломков. Еще более амбициозный проект — запустить под лед подводную лодку-робота.

Интерес к Европе подогревается и последними открытиями на дне земных океанов. Так, до 1970-х гг. ученые в большинстве своем считали, что единственный источник жизненной энергии на Земле — Солнце. Однако в 1977 г. субмарина Alvin обнаружила свидетельства новых форм жизни, процветающих там, где никто прежде не подозревал об их существовании. Исследуя Галапагосский рифт, субмарина обнаружила на дне гигантских сидячих червей, мидий, ракообразных, двустворчатых моллюсков и другие формы жизни, использующие в качестве источника энергии вулканическое тепло. Везде, где есть энергия, может быть и жизнь; а подводные вулканические выходы, которые называют еще «черными курильщиками», представляют собой новый источник энергии в чернильной темноте океанских глубин. Более того, некоторые ученые предполагают, что первая ДНК образовалась не в каком-нибудь приливном водоеме на берегу тропического океана, а глубоко в море возле черного курильщика. Некоторые из самых примитивных (и, возможно, самых древних) форм ДНК найдены именно там — на дне океана. Может быть, и на Европе возле вулканических выходов на дне глобального океана могло зародиться что-нибудь вроде ДНК.

Пока мы можем лишь гадать о том, какие формы жизни могли сформироваться подо льдами Европы. Если жизнь там все же существует, то высшими формами ее, вероятно, должны являться водные животные, не знающие света и ориентирующиеся при помощи сонара; их вселенная ограничена ледяным «небом».

 

Date: 2015-05-08; view: 609; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию