Главная Случайная страница



Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







Распространение пламени по фронту





Чем меньше расстояние между молекулами и меньше разница температур между участком искрового разряда и окружающей смесью, тем лучше условия формирования очага пламени. Чем меньше разница температур между очагом пламени и окружающей смесью и выше давление, тем лучше происходит распространение пламени по фронту. Поэтому, чем выше степень сжатия смеси, тем перечисленные условия лучше.

После формирования очага пламени в камере сгорания двигателя возникают две области чрезвычайно контрастных физических состояний. Нагревание газов, примерно от 600* С до 2000* С в очаге пламени приводит к резкому увеличению их объема. Соответственно очаг и фронт пламени превращаются в область очень высокого давления (в дальнейшем область или зона пламени). Это приводит к возникновению со стороны области пламени волны давления и ударной волны. Скорость ударной волны на порядок выше, чем скорость распространения фронта пламени. Наряду с этим остальная часть камеры сгорания, занятая топливно-воздушной смесью остается областью низкого давления и температуры (в дальнейшем область или зона смеси).

Очаг пламени развивается в виде увеличивающегося в размерах огненного шара вокруг места искрового разряда. Соприкоснувшись со стенкой камеры сгорания, шар принимает форму полусферы. Затем соприкоснувшись с днищем поршня, полусфера деформируется, приобретает по краям плоскую цилиндрическую форму. Из-за этого при дальнейшем увеличении фронта пламени выделяемая энергия концентрируется по ее окружности, приобретает направленный в сторону стен цилиндра, кумулятивный характер.

Поскольку это явление сопровождается ростом давления в области смеси, направленная в сторону стенок цилиндра энергия движущейся волны давления и ударных волн, будет нарастать с эффектом сжимаемой пружины и вызовет в области смеси ответную волну сжатия. Волны, отражаясь от стен цилиндра, накладываются и усиливаются. На фоне общего повышения давления и температуры смеси на гребнях волн возникают микроучастки со значительно более высокими давлениями и температурами, которые достаточны для детонационного сгорания (в дальнейшем «микроучастки с детонационными давлениями и температурой»). Чтобы эти явления не привели к возникновению детонаций, давление в камере сгорания к концу такта сжатия должно быть довольно низким.



Микроучастки сдетонационными давлениями и температурой появляются в области смеси в завершающей стадии такта сжатия и исчезают только с исчезновением области смеси. Такой отрезок такта сжатия в дальнейшем будет называться «завершением сжатия», а такта расширения «началом расширения». В координатах рабочего такта линия «начала расширения» и линия «полного распространения пламени по фронту» или «момент завершения распространения пламени по фронту» имеют одинаковую длину. Т.е. указанные термины выражают суть одного и того же процесса.

Таким образом, характер происходящих процессов требует совместить, казалось бы, несовместимые вещи. Чтобы улучшить процессы формирования очага пламени и его распространения по фронту, давление и температура смеси должны быть высокими. Чтобы не было детонаций, они должны быть относительно низкими.

После возникновения очага пламени и начала процесса распространения пламени по фронту область смеси подвергается воздействию противоположных факторов: а) Уменьшение в объеме за счет вовлечения в зону пламени (нейтральный фактор). б) Уменьшение в объеме за счет сжатия волной давления от области пламени (отрицательный). в) Уменьшение в объеме из-за сжатия на такте сжатия (отрицательный). г) Уменьшение в объеме из-за теплоотвода в стенки камеры сгорания (положительный). д) Увеличение в объеме из-за расширения камеры сгорания на такте расширения (положительный).

Если исключить положительные факторы, то окажется, что область пламени в период его увеличения на тактах сжатия и расширения содержит в себе одну общую причину, вызывающую детонации. Это- перепад давлений в зоне пламени и в зоне смеси. Перепад давлений вызывает волны давления и сжатия. Эксперименты показывают, что разница давлений и температур у основания и на гребнях волн очень значительна. Причем, интенсивность и эффективность процессов горения зависят исключительно от давления и температуры смеси у основания волн. Давления и температуры гребней волн, с одной стороны, никакого положительного влияния на характер происходящих процессов не оказывают. С другой стороны, они являются (поскольку нет детонаций) показателем наилучших условий, при которых могли бы происходить процессы горения. С третьей стороны, будучи способны нарушить нормальное прохождение процессов, они определяют низкие пороговые значения давления и температуры смеси у основания волн.

Устранение причины, вызывающей волны, позволило бы поднять давление и температуру области смеси до их значений на гребнях волн, что намного улучшило бы условия прохождения процессов горения.

Процесс возникновения самовоспламенения на сжатии выглядит следующим образом:

На такте сжатия происходит не просто уменьшение объема смеси, но и его перемещение от НМТ (нижняя мертвая точка) к ВМТ (верхняя мертвая точка). Из-за этого, наряду с вихревыми потоками вызванными процессом всасывания, в смеси возникают волнообразно колеблющиеся относительно друг друга слои, которые имеют разные давления и температуры. Т.е. возникают те же волны, только с меньшей амплитудой колебания и без сопровождения ударных волн.



По достижении в цилиндре определенного давления подается искра, формируется очаг пламени, начинается ввод тепла в рабочее тело. В какой степени ввод тепла на сжатии влияет на область смеси видно из расчетов для двигателя со степенью сжатия 9,9 при частоте работы 2200 об/мин, при полном наполнении, при температуре смеси на впускном клапане 65* С.

1. Угол начала ввода тепла 15* до ВМТ. В момент достижения поршнем ВМТ температура в камере сгорания 834*С, давление 33.2 кг/см2.

2. При угле ввода тепла в 0 градусов в момент достижения поршнем ВМТ температура смеси составляла 385* С, давление 19.5 кг/см2.

Т.е. увеличение температуры рабочего тела на 449* С и давления на 13.7 кг/см2 на такте сжатия получено за счет ввода тепла.

Это показывает, что наряду с приведенной выше общей причиной, способной вызвать детонации, в цилиндре двигателя на такте сжатия возникают еще две причины усиливающие этот процесс.

1. Ввод тепла на сжатии означает принудительное увеличение давления и температуры смеси для обеспечения лучших условий ее сгорания. Но вместе с тем это означает, что искусственным путем создаются и условия для возникновения детонаций.

2. Ввод тепла на сжатии способствует каталитическому сложению волн давления и сжатия создаваемых областью пламени и волн давления создаваемых процессом сжатия.

Этот явление выглядит следующим образом: путем ввода тепла на сжатии создается область пламени с волной давления. Волна давления от области пламени накладывается на волну создаваемую процессом сжатия. Насколько их взаимодействие либо исключение из процесса влияет на баротермическое состояние области смеси видно из примера: При работе с частотой в 2000 об/мин у серийного двигателя со степенью сжатия 9,9 при полном наполнении цилиндра оптимальная точка ввода тепла составляет 15* ПКВ (поворота коленчатого вала) до ВМТ. Давление конца сжатия в ВМТ составляет 32 кг/см2. При тех же условиях для моего двигателя со степенью сжатия 25 оптимальная точка ввода тепла составляет 0* ПКВ. Давление конца сжатия в ВМТ, поскольку перечисленные выше явления исчезли, составляет 60 кг/см2. При этих параметрах оба двигателя работают без детонаций.

Полностью исключить возникновение волн и микроучастковс детонационными давлениями и температурой в смеси не возможно. Но отодвигая точку начала ввода тепла к ВМТ, можно максимально уменьшить их амплитуду. Это позволяет, как показывает приведенный пример, кратно увеличить степень сжатия и тем самым существенно поднять давление сжатия смеси.








Date: 2015-05-04; view: 414; Нарушение авторских прав



mydocx.ru - 2015-2021 year. (0.017 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию