Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Тема 8.1. Свойства геометрических фигур





Основные понятия и термины по теме: геометрическая фигура, многоугольник, многогранник, круг, конус, окружность, перпендикулярные прямые, параллельные прямые, сфера, треугольник, угол, черырехугольник, шар,

План изучения темы:

1. Свойства геометрических фигур на плоскости (углы, параллельные и перпендикулярные прямые, треугольники, четырехугольники, окружность, круг).

2. Свойства геометрических фигур в пространстве (многогранники и тела вращения).

Краткое изложение теоретических вопросов:

1.Свойства геометрических фигур на плоскости

Планиметрия – это раздел геометрии, в котором изучаются фигуры на плоскости. Геометрическую фигуру определяют как любое множество точек. Отрезок, прямая, круг – геометрические фигуры.

Если все точки геометрической фигуры принадлежат одной плоскости, она называется плоской. Например, отрезок, прямоугольник – это плоские фигуры. Существуют фигуры, не являющиеся плоскими. Это, например, куб, шар, пирамида.

Основные свойства простейших фигур на плоскости выражаются в следующих аксиомах:

1. Какова бы ни была прямая, существуют точки, принадлежащие этой прямой и не принадлежащие ей.

Через любые две точки можно провести прямую, и только одну.

Эта аксиома выражает основное свойство принадлежности точек и прямых на плоскости.

2. Из трех точек на прямой одна и только одна лежит между двумя другими.

Этой аксиомой выражается основное свойство расположения точек на прямой.

3. Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.

Очевидно, что аксиома 3 выражает основное свойство измерения отрезков.

4. Прямая разбивает плоскость на две полуплоскости.

Этим предложением выражается основное свойство расположения точек относительно прямой на плоскости.

5. Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180о. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.



Эта аксиома выражает основное свойство измерения углов.

6. На любой полупрямой от ее начальной точки можно отложить отрезок заданной длины, и только один.

7. От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180О, и только один.

В этих аксиомах отражаются основные свойства откладывания углов и отрезков.

К основным свойствам простейших фигур относится и существование треугольника, равного данному.

8. Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данной полупрямой

Основные свойства параллельных прямых выражается следующей аксиомой.

9. Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.

2.Свойства геометрических фигур в пространстве

Простейшими фигурами в пространстве являются точка, прямая и плоскость. Свойства простейших геометрических фигур выражаются аксиомами. Наряду с данными простейшими фигурами в стереометрии рассматриваются геометрические тела и их поверхности. Многогранник представляет собой тело, поверхность которого состоит из конечного числа плоских многоугольников. Эти многоугольники называются гранями многогранника, а стороны и вершины многоугольников называются соответственно ребрами и вершинами многогранника. Многогранники могут быть выпуклыми и невыпуклыми. Выпуклый многогранник расположен по одну сторону относительно плоскости, проходящей через любую его грань .








Date: 2015-12-10; view: 2553; Нарушение авторских прав

mydocx.ru - 2015-2018 year. (0.004 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию