Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Гены, регулирующие апоптоз





В течение многих лет онкоген и ген-супрессор рака играли главную роль в понимании молекулярного базиса канцерогенеза. Хотя они действуют абсолютно по-разному, фактически гены, относящиеся к этим обоим классам, регулируют клеточную пролиферацию. Только недавно стало понятным, что гены, предупреждающие или индуцирующие программированную гибель клетки, играют также роль в развитии рака. Примером таких генов является ген bcl-2. Механизмами, до конца не выясненными, bcl-2 предупреждает программированную смерть клетки. Предполагается, что усиление функции bcl-2, удлиняя время выживания клетки, позволяет проявиться другим мутациям, вызываемыми протоонкогенами, и генами-супрессорами. Бихимическая основа действия bcl-2 полностью не проливает свет на процесс. Полагают, что во многих случаях апоптоз является результатом летального поражения, обусловленного продуктами свободно-радикального и перекисного окисления липидов и, что bcl-2 ингибирует апоптоз путем усиления антиоксидантного пути. Поскольку bcl-2 предупреждает апоптоз, возникает вопрос: «Существуют ли гены, которые обладают противоположным эффектом и запускают программу клеточной смерти?». Другими словами, есть ли гены «клеточной смерти»?

Такие гены (в частности, сеd-8) найдены у нематод и в клетках млекопитающих. Частичный ответ на этот вопрос может быть дан при изучении онкогена c-myc и антионкогена р53. Хотя с-myc традиционно рассматривается как активатор транскрипции, который увеличивает рост клетки, ранние наблюдения показывают, что, если клетки управлялись слишком активным c-myc, в своем окружении они не имеют удовлетворительных факторов роста. Они подвергаются апоптозу. Если функция bcl-2 резко увеличена, то апоптоз является предупреждением. Таким образом, очевидно, что, если виноват не ген bcl-2, то с-myc активация, осуществленная, например, транслокацией является летальной.

В опухолевых клетках существенно изменяются изоферментный спектр ряда ферментов энергетического обмена и их субклеточная локализация в результате нарушения регуляции на геномном уровне. Опухолевая клетка обладает таким изоферментным набором, который позволяет ей адаптироваться к среде и конкурировать с нормальными клетками за необходимые для размножения субстраты. Следует подчеркнуть, что ни в злокачественных клетках, ни в сыворотке онкологических больных не обнаружены ферменты, специфичные для рака. Речь идет либо о количественных изменениях активности, либо о преобладании того или иного изофермента. Все найденные в злокачественных опухолях изоферменты обнаруживаются в органах взрослого организма либо в эмбриональном периоде. Следует также отметить чрезвычайно высокую вариабельность активности ферментов в опухолях одной и той же локализации независимо от их тканевого происхождения и гистологической структуры. Это обусловлено гетерогенностью клеточного состава опухолей человека и разной степенью их прогрессии. В злокачественных опухолях наблюдаются изменения преимущественно тех ферментов, которые обеспечивают способность к росту и пролиферации клеток: увеличение активности ключевых ферментов гликолиза (гексокиназы, лактатдегидрогеназы - ЛДГ, альдолазы и др.), ферментов синтеза ДНК (ДНК-полимеразы), ферментов, связанных с плазматической мембраной клеток (щелочная фосфатаза, у-глутамилтранс-фераза). Увеличение активности ферментов при злокачественном росте сопровождается нарушением представительства изоформ с унификацией их спектра, выражающейся для ЛДГ в преобладании М-субъединиц при раке желудочно-кишечного тракта, раке легкого, яичников, предстательной железы и, наоборот, Н-субъединиц при раке яичек и гемобластозах, для гексокиназы - в преобладании анодных фракций гексоки-назы-И и гексокиназы-Ш. Атипизм жирового обмена в опухоли проявляется преобладанием липогенеза над липолизом, причем особенно интенсивно синтезируют- ся липиды и липопротеиды, которые в дальнейшем идут на построение мембран вновь образующихся клеток. При злокачественных опухолях у больных в сыворотке крови возрастает уровень отдельных липидов, в первую очередь нейтральных жиров, эфиров холестерина, триглицеридов. Атипизм белкового обмена и обмена нуклеиновых кислот проявляется многообразными, подчас неоднозначными изменениями. Однако для опухоли характерно преобладание анаболизма над катаболизмом белков, что приводит к возрастанию уровня протеинов, необходимых для усиленного размножения клеток. Повышенный синтез белка требует постоянной утилизации аминокислот и высоких энергозатрат, опухоль активно поглощает аминокислоты из крови даже при низкой их концентрации. Из аминокислот и пептидов в раковых клетках обнаружено много серосодержащих соединений (в составе SH-групп), таких как метионин, цистеин, глутатион, а также соединений основного характера - лизин, аргинин. Параллельно с ростом опухоли в ее клетках преобладают катаболизм углеводов и анаболизм нуклеиновых кислот по двум путям: рециклизации (синтеза из продуктов распада пуриновых и пиримидиновых оснований) и образования de novo из остатков глюкозы при переаминировании с генерацией оснований нуклеиновых кислот. Усиленный синтез нуклеиновых кислот связан с нарушением генетического контроля. Белковый обмен в опухоли изменяется не только количественно, но и качественно. Так, например, в опухоли прекращается образование ряда тканеспецифических белков (ослабление синтеза альбуминов при раке печени), возобновляется синтез эмбриональных белков в связи с разблокировкой эмбриональных генов (синтез а-фетопротеина при первичном раке печени), в клетках опухоли могут синтезироваться полипептиды и белки, не характерные для данной ткани (синтез АКТГ, паратиреоидного гормона при мелкоклеточном раке легкого; синтез аномальных иммуноглобулинов при макроглобули-немии Вальденстрема, болезни тяжелых цепей, миеломной болезни). Определение этих белков в сыворотке крови используют в диагностике опухолей. Синтез аномальных белков и гормонов опухолью может стать причиной тяжелых нарушений регуляции жизнедеятельности. Например, так называемый белок Бенса-Джонса, синтезируемый клетками опухоли при миеломе, обладает низкой молярной массой, поэтому проходит через клубочковый фильтр почек и определяется в моче как маркер заболевания. Усиленный синтез этого белка приводит к развитию парапротеинемического нефроза. Снижение синтеза органоспецифических белков может вызвать антигенное упрощение опухолевых клеток, что становится одним из механизмов ускользания от иммунного надзора. При опухолевом процессе выявлены нарушения водно-минерального обмена, которые характеризуются накоплением в клетках опухоли К+ и снижением Са2', что способствует ограничению межклеточных связей и инвазивному росту и метастазированию. Для опухолей также характерна гипергидратация как следствие гиперонкии ткани и гипоонкии крови. Атипизм структуры опухолевой ткани отмечается на всех уровнях - тканевом, клеточном и ультраструктурном. Клеточный и ультраструктурный атипизм проявляется полиморфизмом клеток и субклеточных структур по величине и форме, возрастанием ядерно-цитоплазматическо-го соотношения, гиперхромией ядер, изменением числа хромосом, увеличением ядрышек, неодновременным делением ядра и протоплазмы; появляются многоядерные клетки и клетки с почкованием протоплазмы, часто обнаруживаются митозы с аномальным расположением хромосом. Тканевый атипизм характеризуется изменением величины, формы и расположения тканевых элементов, а также соотношения стромы и паренхимы в органе, пораженном опухолью. Нарушение структуры клеток и ткани опухоли проявляется снижением либо полной утратой специализированной функции, свойственной нормальным клеткам и тканям. Например, при гемобластозах лейкозные клетки неспособны осуществлять фагоцитоз, клетки карциномы печени утрачивают способность синтезировать альбумин. При других опухолях, наоборот, опухолевые клетки функционально активны. Так, при базофильной аденоме гипофиза с гиперпродукцией АКТГ развивается болезнь Иценко-Кушинга; при гормонпродуцирующих (паратиреоидный гормон) опухолях паращитовидных желез развивается синдром Реклингаузена. В некоторых случаях при развитии новообразования происходит извращение функции опухолевых клеток, которые начинают выполнять несвойственные им функции. Так, при мелкоклеточном раке легкого опухольтрансформированные клетки эпителия бронхов начинают продуцировать гормоны, не связанные с потребностями организма. Опухолевая клетка запрограммирована на размножение, и этому подчинены все внутриклеточные механизмы регуляции обмена веществ и воспроизводства структур. Для реализации этой программы формируется ее автономность - относительная независимость от командных влияний организма больного. Опухолевая клетка осуществляет аутокринную регуляцию своей жизнедеятельности путем продукции факторов роста. Следовательно, под влиянием генетического сигнала опухолевая клетка сама может стимулировать свое собственное размножение, продуцируя митогены и их рецепторы. В норме в процессе межклеточного взаимодействия осуществляется контактное торможение роста клеток: во время пролиферации дальнейшее деление клетки тормозится соседними, при этом обеспечивается сохранение запрограммированного генетически числа клеток в данной ткани. В опухоли контактное торможение заблокировано, а сама опухолевая клетка навязывает окружающим клеткам свои условия существования. Под влиянием паракринных команд, которые исходят из самой опухолевой клетки, окружающие клетки начинают вырабатывать стимуляторы пролиферации, и опухолевая клетка переходит на внутреннюю систему аутокрин-ного и паракринного управления. Клональное развитие опухолевого процесса. В настоящее время является общепризнанным наличие двух вариантов развития опухолей - моноклонального и поликлонального. Большинство известных опухолей развивается из одной опухолевой клетки (например, аденома и рак толстой кишки, миелолейкоз, Т- и В-клеточные лимфомы), возникшей вследствие ее соматической мутации, и характеризуются моно-клональным происхождением, определенным маркером (например, «филадельфийская» хромосома), в начале своего развития растут из одного узла (уницентрический рост). Опухоли поликлонального происхождения характеризуются ростом из нескольких клеток (мультицентрический рост) и образованием нескольких зачатков опухолей (рак молочной и предстательной желез, рак печени). В соответствии с теорией 387 опухолевого поля (Willis) первоначально в ткани возникает несколько опухолевых зачатков, но по мере роста опухолевые узлы сливаются, формируя один узел, включающий несколько клонов опухолевых клеток. Следовательно, моноклональное и поликлональное развитие опухоли не исключают друг друга, при этом моно-клональный рост опухоли может переходить в поликлональный, а поликлональный (в результате элиминации низкоустойчивых и обычно менее злокачественных клонов) - в моноклональный.

Прогрессия новообразования. Для каждой популяции неопластических клеток характерна определенная степень стабильности свойств, а именно: ростовые потребности и характер распространения, соотношение разных типов клеток в ткани опухоли, характер образуемых клетками структур, которые могут сохраняться неопластическими клетками во многих генерациях. Однако эта стабильность не абсолютна, и время от времени популяция может изменять свои свойства, причем многократно. Изменение свойств неопластической популяции называют прогрессией.

По Л. Фулдсу, прогрессия есть необратимое качественное изменение одного или нескольких свойств неоплазии, направленное в сторону увеличения хотя бы некоторых различий между нормальной и неопластической тканью и характеризующееся рядом общих правил:

1. Независимая прогрессия множественных опухолей: прогрессия разных опухолей, возникших у одного и того же животного, идет независимо друг от друга.

2. Независимая прогрессия признаков: прогрессия разных свойств одной и той же опухоли идет независимо.

3. Прогрессия не зависит от роста: прогрессии могут подвергнуться не только растущие опухоли, но и опухоли, рост которых остановился.

Важным следствием правила 3 является то, что стадия прогрессии, на которой находится выявляемая у человека данная опухоль, не зависит от ее величины или длительности клинического течения.

Date: 2015-06-11; view: 1102; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию