Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Молекулярное рассеяние





При отсутствии инородных частиц оптическая неоднородность может возникнуть в силу статистической природы теплового движения частиц. Т.е. вследствие теплового движения молекулы распределены в пространстве не строго равномерно. В каждый момент времени имеются отклонения от равномерного распределения, т.е. число молекул в единице объема испытывает колебания - возникают флуктуации плотности, благодаря которым среда становится мутной, и в ней может происходить рассеяние света. Поскольку "мутность" среды не обусловлена никакими посторонними частицами, то рассеяние света в такой среде получило название молекулярного рассеяния.

Так как линейные размеры объема, в котором происходит флуктуация числа частиц, значительно меньше длин волн видимого излучения, то молекулярное рассеяние называют также рэлеевским.

Впервые на рассеяние света тепловыми флуктуациями указал польский физик М. Смолуховский в 1908 г., который развил теорию молекулярного рассеяния света разреженными газами.

Молекулярное рассеяние света чистыми без примесей твердыми и жидкими средами отличается от нерезонансного рассеяния газами вследствие коллективного характера флуктуации показателя преломления, обусловленного флуктуацией плотности и температуры среды при наличии достаточно сильного взаимодействия между частицами. Теорию упругого рассеяния жидкостями развил в 1910 г. Эйнштейн, исходя из идей Смолуховсккого.

Основные выводы, вытекающие из теории Эйнштейна, также совпадают с результатами теории Рэлея, так как флуктуационные неоднородности считают малыми по сравнению с длиной волны.

В первую очередь следует отметить, что в молекулярном рассеянии интенсивность рассеянного света обратно пропорциональна длине волны в четвертой степени (I ~1/ l 4). Этим и объясняется, например, более насыщенный голубой цвет неба в горах, где воздух свободен от пыли. Рассеянный свет поляризован, причем при наблюдении перпендикулярно к направлению первичного пучка степень поляризации должна быть равна максимальному значению - 100%, что подтверждается для газов. Однако поляризация не всегда максимальна, что обусловлено оптической анизотропией самих рассеивающих молекул.

Интенсивность молекулярного рассеяния света сравнительно невелика. Однако вблизи критических точек фазовых переходов интенсивность флуктуации значительно возрастает, и размеры областей неоднородностей становятся сравнимы с длиной волны света, что приводит к резкому усилению рассеяния света средой - так называемое явление критической опалесценции.

Другим примером интенсивного молекулярного рассеяния является рассеяние, возникающее при смешении некоторых жидкостей. В обычных условиях в растворах распределение одного вещества в другом происходит равномерно, так что они представляют собой среду, в оптическом отношении не менее однородную, чем чистые жидкости. Это означает, что концентрация растворенного вещества во всем объеме одинакова. Однако существует много веществ, растворимость которых друг в друге сильно зависит от температуры. При некоторой критической температуре они способны смешиваться в любых соотношениях. При такой температуре легко возникают флуктуации концентрации, т.е. возникают нарушения оптической однородности, приводящие к интенсивному рассеянию света.

Рассеяние света можно наблюдать также на границе раздела двух несмешивающихся жидкостей или на свободной поверхности жидкости. Из-за теплового движения поверхность жидкости не бывает абсолютно гладкой. Она всегда неровная. На этих неровностях свет претерпевает дифракцию, т.е. происходит поверхностное молекулярное рассеяние. Если высота неровностей мала по сравнению с длиной волны, то интенсивность рассеянного света обратно пропорциональна второй степени длины волны. И в любом случае интенсивность молекулярного рассеяния зависит от температуры. Это является отличительной особенностью данного вида рассеяния.

Если области неоднородностей движутся, то это приводит к появлению в спектрах рассеянного света линий, смещенных по частоте. Типичным примером может служить рассеяние на упругих волнах плотности (гиперзвуке) – так называемое рассеяние Мандельштама-Бриллюэна.

Все сказанное выше относилось к рассеянию света сравнительно малой интенсивности. После создания лазеров стало возможным изучить рассеяние сильных световых потоков, которому свойственны многие характерные особенности.Где применяется явление рассеяния света?

1. Спектры рассеянного света позволяют определять молекулярные и атомные характеристики веществ, их упругие,релаксационные и другие постоянные. Они иногда являются единственными источниками информации о так называемых запрещенных переходах.

2. На данном явлении основаны многие методы определения размеров и формы мелких частиц, что особенно важно, например, при измерении атмосферной видимости и при исследовании полимерных растворов.

3. Процессы вынужденного рассеяния лежат в основе лазерной спектроскопии и широко используются в лазерах с перестраиваемой частотой.

Date: 2015-08-06; view: 1185; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.01 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию