Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Теорема сложения для совместных событий





Суммой 2-х совместных событий называют событие, состоящее в появлении либо события A, либо события B, либо обоих сразу.

Теорема. Вероятность суммы 2-х совместных событий равна сумме вероятностей этих событий без учета их совместного появления. p(A+B)=p(A)+p(B)−p(AB)

Доказательство:

A+B=AB+AB+AB (сумма несовместных пар)

Тогда p(A+B)=p(AB)+p(AB)+p(AB)

Событие A=AB+AB,

Событие B=AB+AB

p(A+B)=p(A)−p(AB)+p(B)−p(AB)+p(AB)=p(A)+p(B)−p(AB)

Замечание: в этой теореме может существовать 2 различные ситуации.

p(A+B)=p(A)+p(B)−p(A)p(B), где A и B - независимые;

p(A+B)=p(A)+p(B)−p(A)p(B∖A), где A и B - зависимые;

Теоремы о вероятностях. Теоремы сложения несовместных событий.

Суммой 2-х несовместных событий A+B называется событие, состоящее в появлении либо события А, либо события B.

Теорема. Вероятность суммы 2-х несовместных событий равна сумме вероятностей этих событий p(A+B)=p(A)+p(B)

Доказательство.

Если n - общее число всех элементарных исходов;

m1 -- число исходов благоприятных событию A;

m2 -- число исходов благоприятных событию B;

p(A+B)=nm1+m2=nm1+nm2=p(A)+p(B)

Теорема. Вероятность суммы нескольких парно несовместных событий равна сумме вероятностей этих событий.

Доказательство проводится методом математической индукции.

Теорема. Сумма вероятностей событий, образующих полную группу равна 1.

p(A1)+...+p(Ak)=1

Доказательство. Согласно теореме p(A1+A2+...Ak)=p(A1)+p(A2)+...p(Ak).

Так как события Ai образуют полную группу, то сумма событий A1+A2+...Ak есть достоверное событие (хотя бы одно произойдет).

Следовательно, p(A1+A2+...Ak)=1, а потому p(A1)+...+p(Ak)=1.

ЧТД

Теорема. Сумма вероятностей противоположных событий равна 1. p(A)+p(A)=1

Доказательство производится на основании предыдущей теоремы, так как эти события образуют полную группу, несовместны.

Множества и операции над множествами

Напомним основные обозначения, понятия, относящиеся к множествам, которых будем придерживаться дальше.

Начнем с основного понятия, которое встречается практически в каждом разделе математики - это понятие множества.

Множество - это совокупность, набор элементов, объединенных общими свойствами.

Множества обозначаются заглавными латинскими буквами , а элементы множества строчными латинскими буквами .

Запись означает, что есть множество с элементами , которые связаны между собой какой-то функцией .

Замечание. Элементы в множество входят по одному разу, т.е. без повторений.

Основные операции:

1. Принадлежность элемента множеству:

где -- элемент и -- множество (элемент принадлежит множеству ).

2. Непринадлежность элемента множеству:

где -- элемент и -- множество (элемент не принадлежит множеству ).

3. Объединение множеств: .

Объединением двух множеств и называется множество , которое состоит из элементов множеств и , т.е.

или

4. Пересечение множеств: .

Пересечением двух множеств и называется множество , которое состоит из общих элементов множеств и , т.е.

и

5. Разность множеств: .

Разностью двух множеств и , например, множество минус множество , называется множество , которое состоит из элементов множества , которых нет в множестве , т.е.

и

6. Симметрическая разность множеств: .

Симметрической разностью двух множеств и называется множество , которое состоит из не общих элементов множеств и , т.е.

7. Дополнение множества: .

Если предположим, что множество является подмножеством некоторого универсального множества , тогда определяется операция дополнения:

и

8. Вхождение одного множества в другое множество: .

Если любой элемент множества является элементом множества , то говорят, что множество есть подмножество множества (множество входит в множество ).

9. Не вхождение одного множества в другое множество: .

Если существует элемент множества , который не является элементом множества , то говорят, что множество не подмножество множества (множество не входит в множество ).

Date: 2015-07-02; view: 442; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию