Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Средняя квадратическая ошибка простой





Арифметической средины

Дан ряд результатов равноточных измерений одной величины

x 1, x 2 ,..., x.

Представим формулу для вычисления простой арифметической средины в виде

` x = (1.56)

Согласно (1.47) будем иметь

(1.57)

где m 1 = m 2 =... = m n = m. Следовательно, равенство (1.57) примет следующий вид

и окончательно запишем

(1.58)

Итак, средняя квадратическая ошибка простой арифметической средины в корень квадратный раз из числа измерений меньше средней квадратической ошибки одного измерения.

Формула Бесселя

Выполнив n повторных измерений одной и той же величины, вычислим отклонения результатов этих измерений от арифметической средины

Получим формулу для оценки точности результата измерения через отклонения от арифметической средины, но предварительно рассмотрим свойства отклонений vi [ 2 ].

Первое свойство. Алгебраическая сумма отклонений результатов равноточных измерений одной и той же величины от простой арифметической средины равна нулю при любом числе измерений.
Возьмем ряд отклонений от арифметической средины

(1.59)

Суммируя левую и правую части равенства (1.59), получим

Полученное равенство разделим на n

. (1.60)

Поскольку правая часть равенства (1.60) равна нулю, то и [n] = 0.

Второе свойство. Сумма квадратов отклонений результатов равноточных измерений от простой арифметической средины меньше суммы квадратов отклонений этих же результатов от любой другой величины, не равной простой арифметической средины, т.е. если ¹ ` x, то

[ vv ] < [ ee ], (1.61)

где

vi = xi - ` x, ei = xi - .

Докажем второе свойство отклонений vi алгебраическим путем. Вычтем vi из ei по частям: из правого равенства левое

ei - vi = xi - - xi + ` x = ` x - = c. (1.62)

Для n числа наблюдений получим ряд отклонений ei

e 1 = v 1 + c,

e 2 = v 2 + c, (1.63)

.........

en = vn + c.

Возведем в квадрат равенства (1.63) и, суммируя левую и правую части, получим

[ ee ] = [ vv ] + nc 2 + 2 c [ v ]. (1.64)

Но член 2 c [ v ] = 0 по первому свойству отклонений vi, тогда

[ ee ] = [ vv ] + nc 2. (1.65)

Из формулы (1.65) следует, что

[ ee ] > [ vv ]

на положительное число nc 2, вне зависимости от того, больше` x, или меньше. Таким образом, при x¢ ¹ x

[ vv ] < [ ee ], (1.66)

что и требовалось доказать.

Для решения поставленной в начале данного параграфа задачи определим связь между истинными ошибками D i и отклонениями vi. Напишем

D i = xi - X; vi = xi - .

Cоставим разность

. (1.67)

Возведем в квадрат равенства (1.67) и почленно просуммируем

. (1.68)

Согласно первому свойству отклонений имеем

. (1.69)

В равенстве (1.69) левая часть согласно формуле Гаусса равна

. (1.70)

Разность данного равенства соответствует средней квадратической ошибке значения среднего арифметического из результатов измерений, т.е. равна М. Тогда с учетом вышеизложенного получим вместо равенства (1.69) следующее

или

.

Откуда средняя квадратическая ошибка результата измерения составит

. (1.71)

Средняя квадратическая ошибка вычисления ошибки согласно формуле (1.71) равна

. (1.72)

Date: 2016-07-25; view: 453; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию