Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Электропроводность металлов. Виды электропроводности
Электрическая проводимость металлов - это способность элементов и тел проводить через себя определенное количество негативно заряженных частиц. Само проведение электрического тока объясняется достаточно просто - в результате воздействия электромагнитного поля на проводниковый металл, электрон настолько ускоряет свое движение, что теряет связь с атомом. В Международной системе измерения единиц электропроводность значится буквой S и измеряется в сименсах. В зависимости от вида и природы зарядоносителей проводимость бывает электронной, ионной и дырочной. Электронной проводимостью обладают металлы. Существует такая проводимость и в верхних слоях атмосферы, где плотность вещества невелика, благодаря чему электроны могут свободно перемещаться, не соединяясь с положительно заряженными ионами.Жидкие электроны обладают ионной проводимостью. Ионы, являющиеся зарядоносителями, при движении перемещают вещество, в результате чего происходит выделение его на электродах.Возможен механизм проводимости, обусловленный разрывом валентной связи, приводящим к появлению вакантного места с отсутствующей связью. Такое “пустое” место с отсутствующими электронами связи получило название - дырка. Возникновение дырки в кристалле проводника создаёт дополнительную возможность для переноса заряда. Этот процесс, сопровождающийся перемещением электронов, получил название дырочной проводимостью. Электропроводность металлов. Виды электропроводности. Уровень Ферми.
Виды электропроводности В зависимости от вида и природы зарядоносителей проводимость бывает электронной, ионной и дырочной. Электронной проводимостью обладают металлы. Жидкие вещества обладают ионной проводимостью. Ионы, являющиеся зарядоносителями, при движении перемещают вещество, в результате чего происходит выделение его на электродах. Возможен механизм проводимости, обусловленный разрывом валентной связи, приводящим к появлению вакантного места с отсутствующей связью. Такое “пустые” место с отсутствующими электронами связи получило название - дырка. Возникновение дырки в кристалле проводника создаёт дополнительную возможность для переноса заряда. Этот процесс, сопровождающийся перемещением электронов, получил название дырочной проводимостью. Проводниками электрического тока могут служить твердые тела, жидкости, а при соответствующих условиях и газы. К твердым проводникам относят металлы, металлические сплавы и некоторые модификации углерода. Металлы – это пластичные вещества с характерным для них блеском, которые хорошо проводят электрический ток и теплоту. Среди материалов электронной техники металлы занимают одно из важнейших мест. К жидким проводникам относятся расплавленные металлы и различные электролиты. Как правило температура плавления металла высока, за исключением ртути (Hg), у которой она составляет -39°C. Поэтому при нормальной температуре в качестве жидкого металлического проводника можно использовать только ртуть. Температуру близкую к нормальной (29,8°С) имеет еще галлий (Ga). Другие металлы являются жидкими проводниками только при повышенных или высоких температурах. Механизм прохождения тока по металлам в твердом и жидком состояниях обусловлен движением свободных электронов. Поэтому их называют проводниками с электронной электропроводностью или проводниками первого рода. Электролитами, или проводниками второго рода являются растворы (в основном водные) кислот, щелочей и солей, а также расплавы ионных соединений. Прохождение токов через такие проводники связано с переносом вместе с электрическими зарядами частей молекул (ионов). В результате этого состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза. Все газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля ток не проводят. Однако, если напряженность поля выше некоторого критического значения, обеспечивающего начало ударной и фотоионизации, то газ может стать проводником, обладающим электронной и ионной электропроводностью. Сильно ионизированный газ при равенстве числа электронов и положительных ионов в единице объема представляет собой равновесную проводящую среду, называемую плазмой. В основе классической электронной теории металлов, развитой Друде и Лоренцом, лежит представление об электронном газе, состоящем из свободных электронов. Электронному газу приписываются свойства идеального газа, т.е. движение электронов подчиняется законам классической статистики В случае приложения внешнего напряжения электроны получат некоторую добавочную скорость направленного движения в направлении действующих сил поля, благодаря чему и возникает электрический ток. В процессе направленного движения электроны сталкиваются с атомами узлов решетки. При этом скорость движения замедляется, а затем под воздействием электрического поля ускоряются: Наличием свободных электронов обусловливается и высокая теплопроводность металлов. Находясь в непрерывном движении, электроны постоянно сталкиваются с ионами и обмениваются с ними энергией. Поэтому колебания ионов, усилившиеся в данной части металла вследствие нагревания, сейчас же передаются соседним ионам, от них - следующим и т.д., и тепловое состояние металла быстро выравнивается; вся масса металла принимает одинаковую температуру. Теплопроводность можно определить, как свойство вещества проводить (передавать) тепловой поток под действием не изменяющейся во времени разности температур. Энергия Ферми EF — максимальное значение энергии, которое может иметь электрон при температуре абсолютного нуля. Энергия Ферми совпадает со значениями химического потенциала газа фермионов при Т =0 К, то есть уровень Ферми для электронов играет роль уровня химического потенциала для незаряженных частиц. Соответствующий ей потенциал jF = EF/е называют электрохимическим потенциалом. Таким образом, уровнем Ферми или энергией Ферми в металлах является энергия, которую может иметь электрон при температуре абсолютного нуля. При нагревании металла происходит возбуждение некоторых электронов, находящихся вблизи уровня Ферми (за счет тепловой энергии, величина которой порядка kT). Но при любой температуре для уровня с энергией, соответствующей уровню Ферми, вероятность заполнения равна 1/2. Все уровни, расположенные ниже уровня Ферми, с вероятностью больше 1/2 заполнены электронами, а все уровни, лежащие выше уровня Ферми, с вероятностью больше 1/2 свободны от электронов. Существование энергии Ферми является следствием принципа Паули. Величина энергии Ферми существенно зависит от свойств системы. Date: 2016-06-06; view: 5692; Нарушение авторских прав |