Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Уравнение неразрывности потока





Уравнение неразрывности потока представляет собой закон сохранения массы для элементарного объема пористой среды. Выделим мысленно в пористой среде, в которой происходит движение однородной, сжимаемой жидкости или газа объем в виде параллелепипеда с ребрами Dx, Dy, Dz (Рис. 1.3). Найдем массу, которая входит в выделенный объем вдоль оси x за время Dt. Обозначим левую и правую грани индексами 1 и 2. Через левую грань войдет масса (r ux)1 Dy Dz Dt, а через правую грань войдет масса (r ux)2 Dy Dz Dt.

Рис. 1.3
 
 

. Схема элемента пласта

Тогда внутри объема останется масса равная разности этих масс d mx. Если расстояние между гранями Δx устремить к нулю, то эта разность преобразуется к виду:

(1.33)

Аналогично можно найти массы, которые останутся внутри объема при движении вдоль осей y и z. Таким образом, общая масса оставшаяся внутри объема равна сумме этих масс

. (1.34)

С другой стороны масса жидкости внутри порового пространства выделенного объема равна произведению плотности r, пористости m и объема. Поэтому увеличение массы для бесконечно малого промежутка времени равно:

(1.35)

Прировняв эти массы и преобразовав полученное уравнение, получим дифференциальное уравнение неразрывности потока:

. (1.36)

Первое слагаемое в этом уравнении отвечает за нестационарность движения, поэтому если это слагаемое равно нулю, по движение стационарно. Остальные слагаемые отвечают за движение вдоль соответствующих осей.

Отметим, что уравнение неразрывности потока справедливо только в том случае, если поток неразрывен, то есть в потоке нет других жидкостей или газов, а также нет источников или стоков, выделяющих или поглощающих флюид (химических реакций, фазовых превращений и т. д.). В дивергентном виде это уравнение записывается:

. (1.37)

В частных случаях уравнение упрощается. Для плоскопараллельного потока (приток к галерее)

. (1.38)

Для плоско радиального потока (приток к скважине)

(1.39)

Для радиально-сферического потока

(1.40)

При стационарном движении уравнение неразрывности удобно записать в интегральном виде. Для этого выберем элементарную струйку или поток, боковые поверхности которого непроницаемы для жидкости, а торцевые представляют собой поперечные сечения, то есть, перпендикулярны направлению скорости. Проинтегрируем уравнение неразрывности потока по объему между этими сечениями и применим теорему Остроградского - Гаусса то, есть перейдем от интеграла по объему к интегралу по боковой поверхности этого объема:

(1.41)

В этом выражении производная по времени обратилась в ноль так, как движение стационарное. Интеграл по боковой поверхности равен нулю так, как скалярное произведение вектора скорости и нормали к боковой поверхности SБ равно нулю (угол между этими векторами составляет 90° из-за того, что граница непроницаема). В первом поперечном сечении угол между вектором скорости и нормали к поперечному сечению составляет 180°, поэтому косинус этого угла в скалярном произведении равен минус единице. Поэтому интеграл по поверхности первого поперечного сечения представляет собой массовый расход в этом поперечном сечении с отрицательным знаком. Аналогично интеграл по поверхности второго поперечного сечения представляет собой массовый расход в этом поперечном сечении, но с положительным знаком так, как угол между вектором скорости и нормали к поперечному сечению равен нулю. Из полученного выражения следует, что массовый расход в любом поперечном сечении потока при стационарном движении величина постоянная.

(1.42)

Если происходит движение несжимаемой жидкости, то плотность в разных сечениях будет постоянной. Поэтому для несжимаемой жидкости будет постоянным не только массовый расход, но и объемный расход.

Date: 2015-10-19; view: 714; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию