Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Глава 1 основы системного анализа





Основные понятия системного анализа

1.1.1. Задачи системного анализа

В процессе создания ИС исследователи стремятся к наиболее полному и объективному представлению объекта автоматизации - описанию его внутренней структуры, объясняющей причинно-следственные законы функционирования и позволяющей предсказать, а значит, и управлять его поведением. Одним из условий автоматизации является адекватное представление системы с управлением в виде сложной системы.

Существует несколько подходов к математическому описанию сложных систем. Наиболее общим является теоретико-множественный подход, при котором система S представляется как отношение S Ì X ´ Y, где X и Y - входной и выходной объекты системы соответственно.

Точнее говоря, предполагается, что задано семейство множеств Vi где i Î I -множество индексов, и система задается на Vi как некоторое собственное подмножество декартова произведения, все компоненты которого являются объектами системы. Такое определение ориентировано на исследование предельно общих свойств систем независимо от их сущности и лежит в основе общей теории систем.

Другие подходы, сформулированные на более низком уровне общности, не могут претендовать на роль математического фундамента общей теории систем, но позволяют конструктивно описывать системы определенного класса. Так, например, общие закономерности функционирования и свойства систем с управлением являются предметом изучения системного анализа. Принято считать, что системный анализ - это методология решения проблем, основанная на структуризации систем и количественном сравнении альтернатив.

Иначе говоря, системным анализом называется логически связанная совокупность теоретических и эмпирических положений из области математики, естественных наук и опыта разработки сложных систем, обеспечивающая повышение обоснованности решения конкретной проблемы.

В системном анализе используются как математический аппарат общей теории систем, так и другие качественные и количественные методы из области математической логики, теории принятия решений, теории эффективности, теории информации, структурной лингвистики, теории нечетких множеств, методов искусственного интеллекта, методов моделирования.

Применение системного анализа при построении ИС дает возможность выделить перечень и указать целесообразную последовательность выполнения взаимосвязанных задач, позволяющих не упустить из рассмотрения важные стороны и связи изучаемого объекта автоматизации. Системный анализ - это методика улучшающего вмешательства в проблемную ситуацию.

В состав задач системного анализа в процессе создания ИС входят задачи декомпозиции, анализа и синтеза.

Задача декомпозиции означает представление системы в виде подсистем, состоящих из более мелких элементов. Часто задачу декомпозиции рассматривают как составную часть анализа.

Задача анализа состоит в нахождении различного рода свойств системы или среды, окружающей систему. Целью анализа может быть определение закона преобразования информации, задающего поведение системы. В последнем случае речь идет об агрегации (композиции) системы в один-единственный элемент.

Задача синтеза системы противоположна задаче анализа. Необходимо по описанию закона преобразования построить систему, фактически выполняющую это преобразование по определенному алгоритму. При этом должен быть предварительно определен класс элементов, из которых строится искомая система, реализующая алгоритм функционирования.

В рамках каждой задачи выполняются частные процедуры. Например, задача декомпозиции включает процедуры наблюдения, измерения свойств системы. В задачах анализа и синтеза выделяются процедуры оценки исследуемых свойств, алгоритмов, реализующих заданный закон преобразования. Тем самым вводятся различные определения эквивалентности систем, делающие возможными постановку задач оптимизации, т. е. задач нахождения в классе эквивалентных систем системы с экстремальными значениями определяемых в них функционалов.

1.1.2. Система

1 подход. Для выделения системы требуется наличие:

  • цели, для реализации которой формируется система,
  • объекта исследования, состоящего из множества элементов, связанных в единое целое важными, с точки зрения цели, системными признаками,
  • субъекта исследования («наблюдателя»), формирующего систему,
  • характеристик внешней среды по отношению к системе и отражения её взаимосвязей с системой.

Наличие субъекта исследования и некоторая обусловленная этим возможная неоднозначность при выделении существенных системных признаков подчас вызывает трудности при формировании системы и затрудняет её определение.

Можно определить систему как упорядоченное представление об объекте исследования с точки зрения поставленной цели. Упорядоченность заключается в целенаправленном выделении системообразующих элементов, установлении их существенных признаков, характеристик взаимосвязей между собой и с внешней средой. Системный подход, формирование систем позволяют выделить главное, наиболее существенное в исследуемых объектах и явлениях; игнорирование второстепенного упрощает, упорядочивает изучаемые процессы. Для анализа многих сложных ситуаций такой подход важен сам по себе, однако, как правило, построение системы имеет не самостоятельное значение, а служит предпосылкой для разработки и реализации модели конкретной ситуации.

2 подход. В некоторых исследованиях систему задают тремя аксиомами.

Аксиома 1. Для системы определены пространство состояний Z, в которых может находиться система, и параметрическое пространство Т, в котором задано поведение системы.

X=x(t) – входной сигнал, конечное множество функций времени;

Y=y(t) – выходной сигнал, конечное множество функций времени.

y(t) = g(z(t), x(t)) (1.1)

– уравнение наблюдения системы,

z(t) = f(z(t0), x(τ)), τÎ[t0,t] (1.2)

- уравнение состояния системы

Системы, способные изменять состояния z(t) в параметрическом пространстве Т, называются динамическими системами. В отличие от динамических статические системы таким свойством не обладают.

Аксиома 2. Пространство состояний Z содержит не менее двух элементов. Эта аксиома отражает естественное представление о том, что сложная система может находиться в разных состояниях.

Аксиома 3. Система обладает свойством функциональной эмерджентности.

Эмерджентность (целостность) - это такое свойство системы S, которое принципиально не сводится к сумме свойств элементов, составляющих систему, и не выводится из них:

При таком рассмотрении система является совокупностью взаимосвязанных элементов, обладающая интегративными свойствами (эмерджентностью), а также способом отображения реальных объектов.

1.1.3 Классификация систем

Системы принято подразделять на физические и абстрактные, динамические и статические, простые и сложные, естественные и искусственные, с управлением и без управления, непрерывные и дискретные, детерминированные и стохастические, открытые и замкнутые.

1. Деление систем на физические и абстрактные позволяет различать реальные системы (объекты, явления, процессы) и системы, являющиеся определенными отображениями (моделями) реальных объектов.

Для реальной системы может быть построено множество систем - моделей, различаемых по цели моделирования, по требуемой степени детализации и по другим признакам.

Например, реальная ЛВС, с точки зрения системного администратора, - совокупность программного, математического, информационного, лингвистического, технического и других видов обеспечения, с точки зрения противника, - совокупность объектов, подлежащих разведке, подавлению (блокированию), уничтожению, с точки зрения технического обслуживания, - совокупность исправных и неисправных средств.

2. Деление систем на простые и сложные (большие) подчеркивает, что в системном анализе рассматриваются не любые, а именно сложные системы большого масштаба. При этом выделяют структурную и функциональную (вычислительную) сложность.

Общепризнанной границы, разделяющей простые, большие и сложные системы, нет. Однако условно будем считать, что сложные системы характеризуются тремя основными признаками: свойством робастности, наличием неоднородных связей и эмерджентностью.

1). Робастность - способность сохранять частичную работоспособность (эффективность) при отказе отдельных элементов или подсистем. Она объясняется функциональной избыточностью сложной системы и проявляется в изменении степени деградации выполняемых функций, зависящей от глубины возмущающих воздействий. Простая система может находиться не более чем в двух состояниях: полной работоспособности (исправном) и полного отказа (неисправном).

2). В составе сложных систем кроме значительного количества элементов присутствуют многочисленные и разные по типу (неоднородные) связи между элементами. Основными типами считаются следующие виды связей: структурные (в том числе иерархические), функциональные, каузальные (причинно-следственные, отношения истинности), информационные, пространственно-временные. По этому признаку будем отличать сложные системы от больших систем, представляющих совокупность однородных элементов, объединенных связью одного типа.

3). Сложные системы обладают свойством, которое отсутствует у любой из составляющих ее частей. Это интегративность (целостность), или эмерджентность. Другими словами, отдельное рассмотрение каждого элемента не дает полного представления о сложной системе в целом. Эмерджентность может достигаться за счет обратных связей, играющих важнейшую роль в управлении сложной системой.

Считается, что структурная сложность системы должна быть пропорциональна объему информации, необходимой для ее описания (снятия неопределенности). В этом случае общее количество информации о системе S, в которой априорная вероятность появления j-го свойства равна р(уj), определяется известным соотношением для количества информации

I(Y) = -Sp(yj)log2p(yj). (1.3)

Это энтропийный подход к дескриптивной (описательной) сложности.

Одним из способов описания такой сложности является оценка числа элементов, входящих в систему (переменных, состояний, компонентов), и разнообразия взаимозависимостей между ними.

3. Сложные системы допустимо делить на искусственные и естественные (природные).

Искусственные системы, как правило, отличаются от природных наличием определенных целей функционирования (назначением) и наличием управления.

4. Принято считать, что система с управлением, имеющая нетривиальный входной сигнал x{t) и выходной сигнал y(t), может рассматриваться как преобразователь информации, перерабатывающий поток информации (исходные данные) x(t) в поток информации (решение по управлению) y(t).

В соответствии с типом значений x(t), y(t), z(t) и t системы делятся на дискретные и непрерывные. Такое деление проводится в целях выбора математического аппарата моделирования. Так, теория обыкновенных дифференциальных уравнений и уравнений в частных производных позволяет исследовать динамические системы с непрерывной переменной (ДСНП). С другой стороны, современная техника создает антропогенные динамические системы с дискретными событиями (ДСДС), не поддающиеся такому описанию. Изменения состояния этих систем происходят не непрерывно, а в дискретные моменты времени, по принципу «от события к событию». Математические (аналитические) модели заменяются на имитационные, дискретно - событийные: модели массового обслуживания, сети Петри, цепи Маркова и др.

Примеры фазовых траекторий ДСДС и ДСНП показаны на рис. 1.1, а, б.

Для ДСДС траектория является кусочно-постоянной и формируется последовательностью событий u и описывается последовательностью из двух чисел (состояния и времени пребывания в нем). Следует подчеркнуть, что термин «дискретный» отличается от широко используемого прилагательного «цифровой», поскольку последнее означает лишь то, что анализ задачи ведется не в терминах вещественной числовой переменной, а численными методами. Траектория ДСНП, состояниями которой являются точки пространства Rn, постоянно изменяется и развивается на основе непрерывных входных воздействий. Здесь под состоянием понимается «математическое» состояние в том смысле, что оно включает в себя информацию к данному моменту времени (кроме внешних воздействий), которая необходима для однозначного определения дальнейшего поведения системы. Математическое определение включает в себя и физическое определение, но не наоборот.

5. Предметом курса основ системного анализа являются детерминированные системы. Они предполагают в основном ясность цели исследования и детерминированное к ней отношение всех элементов системы, взаимосвязь между ними и с внешней средой. Это не означает, что все предпосылки, лежащие в основе их построения, на практике выполняются. Однако во многих случаях, и это характерно, прежде всего, для макроэкономики, цель исследований – изучение и анализ природы усредненных и устойчивых в среднем показателей. Это приводит к детерминированному подходу к построению системы.

Альтернативу представляют системы со стохастической структурой (случайной природы), когда-либо отсутствует ясно выраженная цель исследования, либо по отношению к ней нет полной определенности, какие признаки считать существенными, а какие – нет. То же относится и к связям элементов системы с внешней средой (так называемые игры с природой). Возникает ситуация принятия решений в условиях неопределенности или риска. Методы построения и исследования стохастических систем более сложные. В некоторых случаях можно указать на способы сведения стохастических систем к специальным образом построенным детерминированным. Исследованиям таких систем соответствуют дисциплины по моделированию рисковых ситуаций в экономике и бизнесе. Для перехода от детерминированной к стохастической системе достаточно в правые части соотношений (1.1) и (1.2) добавить в качестве аргументов функционалов случайную функцию p(t), принимающую значения на непрерывном или дискретном множестве действительных чисел.

6. Следует иметь в виду, что в отличие от математики для системного анализа, как и для кибернетики, характерен конструктивный подход к изучаемым объектам. Это требует обеспечения корректности задания системы, под которой понимается возможность фактического вычисления выходного сигнала y(t) (с той или иной степенью точности) для всех t > 0 при задании начального состояния системы z(0) и входного сигнала x(t) для всех ti. Поэтому при изучении сложных систем приходится переходить к конечным аппроксимациям.

Системы с нетривиальным входным сигналом x(t), источником которого нельзя управлять (непосредственно наблюдать), или системы, в которых неоднозначность их реакции нельзя объяснить разницей в состояниях, называются открытыми.

Признаком, по которому можно определить открытую систему, служит наличие взаимодействия с внешней средой. Взаимодействие порождает проблему «предсказуемости» значений выходных сигналов и, как следствие, - трудности описания открытых систем.

Примером трудностей описания является понятие «странный аттрактор» - специфическое свойство некоторых сложных систем. Простейший аттрактор, называемый математиками неподвижной точкой, представляет собой такой вид равновесия, который характерен для состояния устойчивых систем после кратковременного возмущения (состояние покоя емкости с водой после встряхивания). Второй вид аттрактора - предельный цикл маятника. Все разновидности предельного цикла предсказуемы. Третья разновидность называется странным аттрактором. Обнаружено много систем, имеющих встроенные в них источники нарушений, которые не могут быть заранее предсказаны (погода, место остановки шарика в рулетке). В экспериментах наблюдали за краном, из которого нерегулярно капали капли, хотя промежутки должны быть регулярными и предсказуемыми, так как вентиль зафиксирован и поток воды постоянен.

Понятие открытости систем конкретизируется в каждой предметной области. Например, в области информатики открытыми информационными системами называются программно-аппаратные комплексы, которым присущи следующие свойства:

переносимость (мобильность) - программное обеспечение (ПО) может быть легко перенесено на различные аппаратные платформы и в различные операционные среды;

стандартность - программное обеспечение соответствует опубликованному стандарту независимо от конкретного разработчика ПО;

наращиваемость возможностей - включение новых программных и технических средств, не предусмотренных в первоначальном варианте;

совместимость - возможность взаимодействовать с другими комплексами на основе развитых интерфейсов для обмена данными с прикладными задачами в других системах.

В отличие от открытых замкнутые (закрытые) системы изолированы от среды - не оставляют свободных входных компонентов ни у одного из своих элементов. Все реакции замкнутой системы однозначно объясняются изменением ее состояний. Вектор входного сигнала x(t) в замкнутых системах имеет нулевое число компонентов и не может нести никакой информации. Замкнутые системы в строгом смысле слова не должны иметь не только входа, но и выхода. Однако даже в этом случае их можно интерпретировать как генераторы информации, рассматривая изменение их внутреннего состояния во времени. Примером физической замкнутой системы является локальная сеть для обработки конфиденциальной информации.

Основным противоречием, которое приходится разрешать в замкнутых системах, является проблема возрастания энтропии. Согласно второму закону термодинамики по мере движения замкнутой системы к состоянию равновесия она стремится к максимальной энтропии (дезорганизации), соответствующей минимальной информации. Открытые системы могут изменить это стремление к максимальной энтропии, получая внешнюю по отношению к системе свободную энергию, и этим поддерживают организацию.

1.1.4. Основные определения системного анализа

Для оперирования основными понятиями системного анализа будем придерживаться следующих словесно-интуитивных или формальных определений.

Элемент - некоторый объект (материальный, энергетический, информационный), обладающий рядом важных свойств и реализующий в системе определенный закон функционирования FS, внутренняя структура которого не рассматривается.

Формальное описание элемента системы совпадает с описанием подмодели. В зависимости от целей моделирования входной сигнал x(t) может быть разделен на три подмножества:

• неуправляемых входных сигналов хi Î X, i = 1,...,кх, преобразуемых рассматриваемым элементом;

• воздействий внешней среды nν Î N, ν = 1,…, кп, представляющих шум, помехи;

• управляющих сигналов (событий) um Î U, т = 1,..., ки, появление которых приводит к переводу элемента из одного состояния в другое.

 
 

Иными словами, элемент - это неделимая наименьшая функциональная часть исследуемой системы, включающая < х, п, и, у, FS> и представляемая как «черный ящик» (рис. 1.2). Функциональную модель элемента можно представлять как y(t) = FS(x, п, и, t).

Входные сигналы, воздействия внешней среды и управляющие сигналы являются независимыми переменными. При строгом подходе изменение любой из независимых переменных влечет за собой изменение состояния элемента системы. Поэтому в дальнейшем будем обобщенно обозначать эти сигналы как x(t), a функциональную модель элемента - как y(t) = FS(x(t)), если это не затрудняет анализ системы.

Под средой понимается множество объектов S' вне данного элемента (системы), которые оказывают влияние на элемент (систему) и сами находятся под воздействием элемента (системы), S Ç S' = Æ.

Правильное разграничение исследуемого реального объекта и среды является необходимым этапом системного анализа. Часто в системном анализе выделяют понятие «суперсистема» - часть внешней среды, для которой исследуемая система является элементом.

Подсистема - часть системы, выделенная по определенному признаку, обладающая некоторой самостоятельностью и допускающая разложение на элементы в рамках данного рассмотрения.

Система может быть разделена на элементы не сразу, а последовательным расчленением на подсистемы - совокупности элементов. Такое расчленение, как правило, производится на основе определения независимой функции, выполняемой данной совокупностью элементов совместно для достижения некой частной цели, обеспечивающей достижение общей цели системы. Подсистема отличается от простой группы элементов, для которой не выполняется условие целостности.

Последовательное разбиение системы в глубину приводит к иерархии подсистем, нижним уровнем которых является элемент.

Характеристика - то, что отражает некоторое свойство элемента системы.

Характеристики делятся на количественные и качественные в зависимости от типа отношений на множестве их значений.

Если на множестве значений заданы метризованные отношения, когда указывается степень количественного превосходства, то характеристика является количественной. Например, размер экрана (см), максимальное разрешение (пиксель) являются количественными характеристиками мониторов, поскольку существуют шкалы измерений этих характеристик в сантиметрах и пикселях соответственно, допускающие упорядочение возможных значений по степени количественного превосходства.

Если пространство значений не метрическое, то характеристика называется качественной. Например, такая характеристика монитора, как комфортное разрешение, хотя и измеряется в пикселях, является качественной. Поскольку на комфортность влияют мерцание, нерезкость, индивидуальные особенности пользователя и т.д., единственным отношением на шкале комфортности является отношение эквивалентности, позволяющее различить мониторы как комфортные и некомфортные без установления количественных предпочтений.

Количественная характеристика называется параметром.

Характеристики элемента являются зависимыми переменными и отражают свойства элемента. Под свойством понимают сторону объекта, обусловливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Свойства задаются с использованием отношений одного из основных математических понятий, используемых при анализе и обработке информации. На языке отношений единым образом можно описать воздействия, свойства объектов и связи между ними, задаваемые различными признаками. Существует несколько форм представления отношений: функциональная (в виде функции, функционала, оператора), матричная, табличная, логическая, графовая, представление сечениями, алгоритмическая (в виде словесного правила соответствия).

Свойства классифицируют на внешние, проявляющиеся в форме выходных характеристик уi только при взаимодействии с внешними объектами, и внутренние, проявляющиеся в форме переменных состояния zi при взаимодействии с внутренними элементами рассматриваемой системы и являющиеся причиной внешних свойств.

Одна из основных целей системного анализа - выявление внутренних свойств системы, определяющих ее поведение.

По структуре свойства делят на простые и сложные (интегральные). Внешние простые свойства доступны непосредственному наблюдению, внутренние свойства конструируются в нашем сознании логически и не доступны наблюдению. Свойства проявляются только при взаимодействии с другими объектами или элементами одного объекта между собой.

По степени подробности отражения свойств выделяют горизонтальные (иерархические) уровни анализа системы. По характеру отражаемых свойств выделяют вертикальные уровни анализа - аспекты. Этот механизм лежит в основе утверждения о том, что для одной реальной системы можно построить множество абстрактных систем.

При проведении системного анализа на результаты влияет фактор времени. Для своевременного окончания работы необходимо правильно определить уровни и аспекты проводимого исследования. При этом производится выделение существенных для данного исследования свойств путем абстрагирования от несущественных по отношению к цели анализа подробностей.

Законом функционирования FS, описывающим процесс функционирования элемента системы во времени, называется зависимость y{t) = FS(x, n, и, t).

Оператор FS преобразует независимые переменные в зависимые и отражает поведение элемента (системы) во времени - процесс изменения состояния элемента (системы), оцениваемый по степени достижения цели его функционирования. Понятие поведения принято относить только к целенаправленным системам и оценивать по показателям.

Цель - ситуация или область ситуаций, которая должна быть достигнута при функционировании системы за определенный промежуток времени. Цель может задаваться требованиями к показателям результативности, ресурсоемкости, оперативности функционирования системы либо к траектории достижения заданного результата. Как правило, цель для системы определяется старшей системой, а именно той, в которой рассматриваемая система является элементом.

Показатель - характеристика, отражающая качество j -й системы или целевую направленность процесса (операции), реализуемого j- й системой:

Y j = W j(n, x, и).

Показатели делятся на частные показатели качества (или эффективности) системы yji, которые отражают i -е существенное свойство j -й системы, и обобщенный показатель качества (или эффективности) системы Y j - вектор, содержащий совокупность свойств системы в целом. Различие между показателями качества и эффективности состоит в том, что показатель эффективности характеризует процесс (алгоритм) и эффект от функционирования системы, а показатели качества - пригодность системы для использования ее по назначению.

Вид отношений между элементами, который проявляется как некоторый обмен (взаимодействие), называется связью. В исследованиях выделяются внутренние и внешние связи. Внешние связи системы - это ее связи со средой. Они проявляются в виде характерных свойств системы. Определение внешних связей позволяет отделить систему от окружающего мира и является необходимым начальным этапом исследования.

В ряде случаев считается достаточным исследование всей системы ограничить установлением ее закона функционирования. При этом систему отождествляют с оператором FS и представляют в виде «черного ящика». Однако в задачах анализа обычно требуется выяснить, какими внутренними связями обусловливаются интересующие исследователя свойства системы. Поэтому основным содержанием системного анализа является определение структурных, функциональных, каузальных, информационных и пространственно-временных внутренних связей системы.

Структурные связи обычно подразделяют на иерархические, сетевые, древовидные и задают в графовой или матричной форме.

Функциональные и пространственно-временные связи задают как функции, функционалы и операторы.

Каузальные (причинно-следственные) связи описывают на языке формальной логики.

Для описания информационных связей разрабатываются инфологические модели.

Выделение связей разных видов наряду с выделением элементов является существенным этапом системного анализа и позволяет судить о сложности рассматриваемой системы.

Важным для описания и исследования систем является понятие алгоритм функционирования AS, под которым понимается метод получения выходных характеристик y(t) с учетом входных воздействий x(t), управляющих воздействий u(t) и воздействий внешней среды n(t).

Алгоритм функционирования раскрывает механизм проявления внутренних свойств системы, определяющих ее поведение в соответствии с законом функционирования. Один и тот же закон функционирования элемента системы может быть реализован различными способами, т.е. с помощью множества различных алгоритмов функционирования AS. Наличие выбора алгоритмов AS приводит к тому, что системы с одним и тем же законом функционирования обладают разным качеством и эффективностью процесса функционирования.

Качество - совокупность существенных свойств объекта, обусловливающих его пригодность для использования по назначению. Оценка качества может производиться по одному интегральному свойству, выражаемому через обобщенный показатель качества системы.

Процессом называется совокупность состояний системы z(t Q ), z (t 1),..., z(tk), упорядоченных по изменению какого-либо параметра t, определяющего свойства системы.

Формально процесс функционирования как последовательная смена состояний интерпретируется как координаты точки в k -мерном фазовом пространстве. Причем каждой реализации процесса будет соответствовать некоторая фазовая траектория. Совокупность всех возможных значений состояний {z} называется пространством состояний системы.

В общем случае время в модели системы S может рассматриваться на интервале моделирования (0, Т) как непрерывное, так и дискретное, т.е. квантованное на отрезки длиной Δ t временных единиц каждый, когда Т = m Δ t, где m - число интервалов дискретизации.

Эффективность процесса - степень его приспособленности к достижению цели.

Принято различать эффективность процесса, реализуемого системой, и качество системы. Эффективность проявляется только при функционировании и зависит от свойств самой системы, способа ее применения и от воздействий внешней среды.

Критерий эффективности - обобщенный показатель и правило выбора лучшей системы (лучшего решения). Например, Y* = max{ Y j }.

Если решение выбирается по качественным характеристикам, то критерий называется решающим правилом.

Если нас интересует не только закон функционирования, но и алгоритм реализации этого закона, то элемент не может быть представлен в виде «черного ящика» и должен рассматриваться как подсистема (агрегат, домен) - часть системы, выделенная по функциональному или какому-либо другому признаку.

Описание подсистемы в целом совпадает с описанием элемента. Но для ее описания дополнительно вводится понятие множества внутренних (собственных) характеристик подсистемы. Метод получения выходных характеристик кроме входных воздействий x(t), управляющих воздействий u(t) и воздействий внешней среды n(t) должен учитывать и собственные характеристики подсистемы h(t).

Описание закона функционирования системы наряду с аналитическим, графическим, табличным и другими способами в ряде случаев может быть получено через состояние системы. Состояние системы - множество значений характеристик системы в данный момент времени.

Формально состояние системы в момент времени t0 < t* £ Т полностью определяется начальным состоянием z(t0), входными воздействиями x(t), управляющими воздействиями u(t), внутренними параметрами h(t) и воздействиями внешней среды n(t), которые имели место за промежуток времени t* -t0, с помощью глобальных уравнений динамической системы (1.1), (1.2), преобразованных к виду

z(t) =f(z(t0), х(t), и(t), п(t), h(t), t), t Î [ t0, t ];

y(t) = g(z(t), t).

Здесь уравнение состояния по начальному состоянию z(t0) и переменным х, и, п, h определяет вектор-функцию z(t), а уравнение наблюдения по полученному значению состояний z(t) определяет переменные на выходе подсистемы y(t).

Таким образом, цепочка уравнений объекта «вход-состояния-выход» позволяет определить характеристики подсистемы и под математической моделью реальной системы можно понимать конечное подмножество переменных {x{t), u(t), n(t), h(t)} вместе с математическими связями между ними и характеристиками y(t).

Структура - совокупность образующих систему элементов и связей между ними. В структуре системы существенную роль играют связи. Так, изменяя связи при сохранении элементов, можно получить другую систему, обладающую новыми свойствами или реализующую другой закон функционирования. Например, в качестве системы рассмотрим соединение трех проводников, обладающих разными сопротивлениями. В системе А соединим их параллельно, а в системе В – последовательно. При одинаковом входе выходы систем будут разными.

Необходимость одновременного и взаимоувязанного рассмотрения состояний системы и среды требует определения понятий «ситуация» и «проблема».

Ситуация - совокупность состояний системы и среды в один и тот же момент времени.

Проблема - несоответствие между существующим и требуемым (целевым) состоянием системы при данном состоянии среды в рассматриваемый момент времени.

Date: 2015-08-15; view: 812; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.012 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию