Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Логарифмически нормальное распределение





При логарифмически нормальном распределении нормально распределенным является логарифм (lg t) случайной величины Т, а не сама эта величина.

Это распределение обеспечивает более точное, чем нормальное распределение, описание наработки до отказа тех объектов, у которых отказ возникает вследствие усталости, например, подшипников качения, электронных ламп и пр.

Оно используется при обработке опытных данных об усталостной долговечности металлов, времени безотказной работы некоторых объектов.

Логарифмически нормальное распределение позволяет описывать течение времени безотказной работы объектов, имеющих свойство «упрочняться» по ходу времени эксплуатации. «Упрочнение» сказывается в постепенном уменьшении скорости износа.

Плотность распределения выражается зависимостью:

. (4.23)

Параметры m и S по результатам N испытаний принимаются:

, (4.24)

(4.25)

Вероятность безотказной работы можно определить по таблице нормального распределения (см. табл. 4.3) в зависимости от значения квантили:

. (4.26)

Математическое ожидание наработки до отказа:

. (4.27)

Среднее квадратическое отклонение

. (4.28)

Графики изменения показателей надежности при логарифмически нормальном распределении приведены на рисунке 4.9.

 

 
 

 


 

 
 








Date: 2015-07-17; view: 271; Нарушение авторских прав

mydocx.ru - 2015-2018 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию