Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Монтируемые файловые системы





Файлы любой файловой системы становятся доступными только после "монтирования" этой файловой системы. Файлы "не смонтированной" файловой системы не являются видимыми операционной системой.

Для монтирования файловой системы используется системный вызов mount. Монтирование файловой системы означает следующее. В имеющемся к моменту монтирования дереве каталогов и файлов должен иметься листовой узел - пустой каталог (в терминологии UNIX такой каталог, используемый для монтирования файловой системы, называется directory mount point - точка монтирования). В любой файловой системе имеется корневой каталог. Во время выполнения системного вызова mount корневой каталог монтируемой файловой системы совмещается с каталогом - точкой монтирования, в результате чего образуется новая иерархия с полными именами каталогов и файлов.

Смонтированная файловая система впоследствии может быть отсоединена от общей иерархии с использованием системного вызова umount. Для успешного выполнения этого системного вызова требуется, чтобы отсоединяемая файловая система к этому моменту не находилась в использовании (т.е. ни один файл из этой файловой системы не был открыт). Корневая файловая система всегда является смонтированной, и к ней не применим системный вызов umount.

Как мы отмечали выше, отдельная файловая система обычно располагается на логическом диске, т.е. на разделе физического диска. Для инициализации файловой системы не поддерживаются какие-либо специальные системные вызовы. Новая файловая система образуется на отформатированном диске с использованием утилиты (команды) mkfs. Вновь созданная файловая система инициализируется в состояние, соответствующее наличию всего лишь одного пустого корневого каталога. Команда mkfs выполняет инициализацию путем прямой записи соответствующих данных на диск.

Реалізація мережевої підсистеми в ядрах Unix-подібних ОС. Використання для цих цілей підсистеми STREAMS (у операційних системах гілки SYSTEMV). Модулі протоколів, як мультиплексори STREAMS, обмін повідомленнями між модулями. Механізм сокетів в ядрах систем, що відносяться до гілки розвитку BSD.

Подсистема STREAMS обеспечивает создание потоков — полнодуплексных каналов между прикладным процессом и драйвером устройства[57]. С другой стороны, архитектура STREAMS определяет интерфейсы и набор правил, необходимых для взаимодействия различных частей этой системы и для разработки модульных драйверов, обеспечивающих такое взаимодействие и обработку.

На рис. 5.13 «Базовая архитектура потока» показана общая архитектура коммуникационного канала между процессом и драйвером STREAMS. Сам поток полностью располагается в пространстве ядра, соответственно и все функции обработки данных выполняются в системном контексте. Типичный поток состоит из головного модуля, драйвера и, возможно, одного или более модулей. Головной модуль взаимодействует с прикладными процессами через интерфейс системных вызовов. Драйвер, замыкающий поток, взаимодействует непосредственно с физическим устройством или псевдоустройством, в качестве которого может выступать другой поток. Модули выполняют промежуточную обработку данных.

Рис. 5.14. Использование одних и тех же модулей для создания различных потоков

Процесс взаимодействует с потоком, используя стандартные системные вызовы open(2), close(2), read(2), write(2) и ioctl(2). Дополнительные функции работы с потоками включают poll(2), putmsg(2) и getmsg(2). Передача данных по потоку осуществляется в виде сообщений, содержащих данные, тип сообщения и управляющую информацию. Для передачи данных каждый модуль, включая головной модуль и сам драйвер, имеет две очереди — очередь чтения (read queue) и очередь записи (write queue). Каждый модуль обеспечивает необходимую обработку данных и передает их в очередь следующего модуля. При этом передача в очередь записи осуществляется вниз по потоку (downstream), а в очередь чтения — вверх по потоку (upstream). Например, на рис. 5.13 из очереди записи модуля 2 сообщение может быть передано в очередь записи модуля 1, но не наоборот. В свою очередь сообщение из очереди чтения модуля 2 передается в очередь чтения головного модуля, который далее передает данные процессу в ответ на системный вызов read(2). Когда процесс выполняет системный вызов write(2), данные передаются головному модулю и далее вниз по потоку.

Сообщения также могут передаваться в парную очередь. Другими словами, из очереди записи модуля 1 сообщение может быть направлено в очередь чтения того же модуля, а затем, при необходимости, передано вверх по потоку. При этом модулю нет необходимости знать, какой части потока принадлежит следующая очередь — головному или промежуточному модулю, или драйверу. Такой подход позволяет производить разработку модулей независимо друг от друга и использовать их затем в различных комбинациях и в различных потоках.

Подсистема STREAMS обеспечивает возможность такой комбинации благодаря механизму динамического встраивания (push) модуля в поток. Встраивание модуля возможно непосредственно после головного модуля. При этом будут установлены связи между соответствующими очередями встраиваемого модуля, головного модуля и модулей вниз по потоку. После этого встроенный модуль будет производить определенную обработку проходящих данных, тем самым изменяя изначальную функциональность потока. При необходимости модуль может быть извлечен (pop) из потока.

На рис. 5.14 показаны различные потоки, созданные из нескольких стандартных компонентов, для поддержки сетевых протоколов семейства TCP/IP. Причем модули IP, TCP и UDP могут поставляться одним производителем, а драйверы Ethernet или Token Ring соответствующими производителями сетевых адаптеров. В результате встраивания необходимых модулей первый поток будет обеспечивать передачу трафика TCP через адаптер Ethernet, в то время как второй — передачу трафика UDP через адаптер Token Ring.

Рис. 5.15. Конфигурация сетевого доступа с использованием подсистемы STREAMS

В этом случае модули TCP и UDP являются верхними мультиплексорами, а модуль IP реализован в виде гибридного мультиплексора [58]. Такая организация позволяет приложениям создавать потоки, используя различные комбинации сетевых протоколов и драйверов сетевых устройств. Задача мультиплексирующего драйвера помимо обработки данных заключается в хранении состояния всех потоков и правильной маршрутизации данных между ними, т. е. передаче данных в очередь требуемого модуля.

Модули

Модули являются основными компонентами потока. Каждый модуль состоит из пары очередей — очереди чтения и записи, а также набора функций, осуществляющих обработку данных и их передачу вверх или вниз по потоку. Архитектура модуля представлена на рис.

Каждая очередь представлена структурой данныхqueue. Наиболее важными полямиqueueявляются:

q_qinfo Указатель на структуруqinit, описывающую функции обработки сообщений данной очереди.
q_first,q_last Указатели на связанный список сообщений, ожидающих передачи вверх или вниз по потоку.
q_next Указатель на очередь следующего модуля вверх или вниз по потоку.
q_ptr Указатель на внутренние данные модуля (очереди).

Помимо указанных полей, структураqueueсодержит параметры для обеспечения управления потоком данных — верхнюю и нижнюю ватерлинии очереди.

Передача данных вверх или вниз по потоку осуществляется с помощью функций модуля, указатели на которые хранятся в структуреqinit. Модуль должен определить четыре процедуры для обработки каждой из очередей: xx put(), xx service(), xx open()и xx close(), где xx, как и прежде, обозначает уникальный префикс драйвера. Эти функции адресуются указателями(*qi_putp)(),(*qi_srvp)(),(*qi_qopen)(),(*qi_close)(). Этих четырех функций достаточно для взаимодействия с соседними модулями, обработки и передачи данных. Функция xx open()вызывается каждый раз, когда процесс открывает поток или при встраивании модуля. Соответственно функция xx close()вызывается при закрытии потока или извлечении модуля. Функция xx put()осуществляет обработку сообщений, проходящих через модуль. Если xx put()не может передать сообщение следующему модулю (например, в случае, если очередь следующего модуля переполнена), она помещает сообщение в собственную очередь. Периодически ядро вызывает процедуру xx service()каждого модуля для передачи отложенных сообщений.

Модуль должен иметь функцию xx put()для каждой очереди. Функция xx service()может не существовать, в этом случае xx put()не имеет возможности отложить передачу сообщения и должна передать его немедленно, даже если очередь следующего модуля переполнена. Таким образом модули, не имеющие процедур xx service(), не обладают возможностью управления потоком данных. Эти аспекты мы подробнее рассмотрим в следующих разделах.

Оставшиеся поля структуры qinit:

module_info В этой структуре хранятся базовые значения таких параметров, как ватерлинии, размер сообщений и т.д. Некоторые из этих параметров также находятся в структуре queue. Это дает возможность динамически изменять их, сохраняя при этом базовые значения.
module_stat Эта структура непосредственно не используется подсистемой STREAMS. Однако модуль имеет возможность осуществлять сбор разнообразной статистики своего участка потока с помощью полей этой структуры.

СОКЕТЫ

ВВЕДЕНИЕ

Версия BSD 4.2. системы UNIX была первой версией, в которой TCP/IP был включен в состав ядра операционной системы, и в которой был предложен программный интерфейс этого протокола: сокеты (sockets). Сокеты, таким образом, представляют собой API (Application Program Interface), то есть интерфейс между прикладными программами и сетевыми уровнями.

Date: 2016-07-22; view: 691; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию