Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







Метод Д-разбиения





 

Замкнутой системе автоматического управления ставится в соответствие ее характеристическое уравнение .

.

Путем решения данного уравнения находятся корни и убеждаются, что из n корней m1- правых, n - m1 - левых.

Можно представить, что в гиперпространстве n+1-го порядка n+1 осей, по которым откладываются значения коэффициентов характеристического уравнения . Тогда каждому сочетанию этих конкретных параметров соответствует точка в гиперпространстве, а в плоскости корней характеристического уравнения в тоже время их конкретное расположение.

Если изменить один или несколько коэффициентов уравнения, точка в пространстве займет новое положение, корни в плоскости корней также сместятся. При непрерывном изменении коэффициентов корни будут выписывать годограф. И при каком-то сочетании коэффициентов уравнения один из корней попадет в начало координат, либо два корня на мнимую ось. Когда это случится, то уравнение превратится в тождество : , потому как вещественная часть S в станет равна 0.

При дальнейшем изменении параметров может случиться, что еще какие-то корни "выедут" на мнимую ось. Этот случай также будет соответствовать уравнению .

Таким образом, условие представляет собой уравнение гиперповерхности в гиперпространстве, пересечение которой соответствует приобретению или потере характеристическим уравнением одного вещественного или двух комплексных правых корней.

 

На практике используется Д-разбиение по одному (не очень интересно), либо по двум параметрам.

Предположим, что нужно выяснить влияние на устойчивость системы двух параметров: m и h, которые входят в характеристическое уравнение замкнутой системы линейно. Тогда данное уравнение может быть приведено к виду

.

После замены в уравнении s на jw получается система уравнений:

так как ,

решение которой, например, по правилу Крамера, позволяет получить m и h как функции w:

, , .

 

Следовательно можно построить однопараметрические зависимости и и отобразить их на плоскости параметров . Полученная кривая при изменении w от до является кривой Д-разбиения плоскости где m откладывается по оси абсцисс, а h - ординат. При движении по кривой Д-разбиения в сторону возрастания w штриховку наносят слева, если определитель положителен. Точка по кривой пробегает дважды: первый раз при изменении w от до 0, второй - при изменении w от 0 до . Однако при w=0 определитель меняет знак, поэтому кривую оба раза штрихуют с одной стороны. Получается одна кривая с двойной штриховкой, соответствующая изменению w от 0 до . При некотором значении определитель может обратиться в ноль. Если при этом соответствующие миноры не обращаются одновременно в ноль, то точка уходит в бесконечность. Если же одновременно с определителем обращаются в ноль и миноры, то рассматривается уравнение прямой линии

,

называемой особой прямой. Всем ее точкам соответствует одно и тоже значение w.

Особые прямые получаются также из уравнения при и из уравнения при , если в эти уравнения входит хотя бы один из параметров h или m.

Правила штриховки следующие:

· Если особая прямая и кривая Д-разбиения сближаются асимптотически - штриховка особой прямой однократная, направлена к заштрихованной стороне кривой Д-разбиения.

· если особая прямая имеет общую точку с кривой Д-разбиения, но не пересекает ее - штриховка особой прямой однократная и около общей точки направлена к заштрихованной стороне Д-разбиения.

· если особая прямая пересекает кривую Д-разбиения в двух точках - штриховка особой прямой двойная и направлена к заштрихованной стороне кривой Д-разбиения около той точки пересечения, в которой определитель меняет знак, около второй точки пересечения определитель знака не меняет и штриховку особой прямой не изменяют.

· если особая прямая пересекает кривую Д-разбиения, но знак определителя не меняется - особую прямую не штрихуют.

После того, как кривая Д-разбиения и особые прямые построены, и на них нанесена штриховка, отыскивается область, внутрь которой направлена штриховка ее границ. Это область потенциальной устойчивости. С помощью любого критерия устойчивости проверяется, является ли система в какой-либо точке данной области устойчивой. Тогда рассматриваемая область принимается в качестве области устойчивости. Возможны случаи, когда области устойчивости отсутствуют.

Методом Д-разбиения плоскости по двум параметрам иногда можно выяснить влияние на устойчивость одного параметра, который входит в характеристическое уравнение нелинейным образом.

 

Пример.Имеется система, передаточная функция которой

.

Требуется произвести D –разбиение по T1 и К. Обозначим .

Характеристическое уравнение замкнутой системы

.

После преобразований

.

Для построения границы области устойчивости рассмотрим уравнение

,

которое, после разделения на мнимую и комплексную части, преобразуется в систему

; или .

Вычисляя соответствующие определитель и миноры

, ,

 

, находим параметрические зависимости .

В точке определитель обращается в ноль. Соответствующие кривые t(w), К(w) и К(t) терпят разрыв.

Особые прямые получаются из уравнений и , которые для данного примера имеют вид: К+1=0 и t×Т2×Т3=0 соответственно.

Уравнения особых прямых:

К = -1; t = 0.

Ниже на рисунке приведены зависимости t(w), К(w) и построена область устойчивости системы.

 

Получили две области потенциальной устойчивости D(0). Для проверки возьмем точку из верхней области (К=0, t >0). Подставим эти значения в характеристическое уравнение: . В данной точке система будет устойчива, так все корни уравнения отрицательны. Аналогично проверяется и вторая область.

Область устойчивости, находящаяся в первом квадранте - рабочая область. Область устойчивости, находящаяся в третьем квадранте - область математически устойчивых решений (не рабочая).

 








Date: 2015-05-08; view: 1283; Нарушение авторских прав

mydocx.ru - 2015-2017 year. (0.007 sec.) - Пожаловаться на публикацию