Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Термовакуумные испытания





Термовакуумные испытания проводят для исследования работоспособности ЭС в зависимости от их теплового режима в условиях космоса. Для обеспечения теплового режима ЭС в лабораторных условиях достаточно воспроизвести основные факторы космического пространства:

· глубокий вакуум;

· солнечное излучение;

· излучения планет солнечной системы;

«Холод» и «черноту» пространства за пределами телесных углов, занимаемых Солнцем и рассматриваемой планетой.

Важное место в наземной отработке космических аппаратов занимает изучение их теплового режима. Жесткие весовые и энергетические ограничения заставляют конструкторов создавать системы терморегулирования без существенных запасов хладо— или теплопроизводительности. В этих условиях даже незначительные ошибки в тепловых расчетах могут привести к тому, что тепловой режим космического аппарата не будет выдержан в заданных пределах и вызовет выход из строя элементов бортовой аппаратуры.

Как показано на рис. 1, особенности теплового режима (даже в рамках допустимого диапазона) сильно влияют на надежность космического аппарата. Наименьшее число отказов наблюдается при нормальной, комнатной температуре. С ее понижением число отказов возрастает, становясь значительным при пониженных температурах и особенно большим при повышенных. Для проведения тепловых испытаний на Земле в специальных барокамерах (рис. 2) воспроизводятся некоторые условия космического пространства, прежде всего давление, температура и солнечная радиация. В полной мере имитация этих условий сложна, поэтому на практике обычно ограничиваются той или иной степенью приближения. Так, например, уже при давлении 10-8-10-10 кгс/см2 теплопроводность газов становится пренебрежимо малой, и ею можно пренебречь. Отвод тепла от космического аппарата в окружающую среду в этом случае будет происходить так же, как и в космосе, — только излучением.

Температура космического пространства с достаточной для практических целей точностью имитируется путем охлаждения внутренних стенок (экранов) барокамер жидким азотом (77 К). Изнутри эти экраны покрывают специальными покрытиями, обеспечивающими степень их черноты, близкую к единице. Это делается для того, чтобы излучаемый объектом тепловой поток поглощался стенкой, а не отражался ею обратно на объект.

Вообще говоря, ряд специалистов считает, что имитация истинных условий космоса, возможно, никогда не будет достигнута, но любая степень приближения к ним стоит затраченных усилий. Однако на практике всегда ограничиваются разумной степенью приближения, определяемой некоторым пересечением технической осуществимости и экономической целесообразности создания наземных экспериментальных установок.

На начальном этапе развития космонавтики наземная экспериментальная база была сравнительно слабой. В США, например, первая установка, предназначенная для проведения тепловых испытаний космических аппаратов, построена только в 1958 г. и была весьма примитивной. Она представляла собой камеру диаметром 2,4 м и длиной 4,6 м. Ее экраны охлаждались протекавшим по ним жидким азотом. С помощью трех механических и одного диффузионного насосов в ней можно было поддерживать давление порядка 10-11-10-12 кг/см2. Имитация внешнего теплового потока, поступавшего на установленный в камере аппарат, производилась с помощью инфракрасных нагревателей, количественно воспроизводивших потоки, вычисленные аналитически.

 

1 — комнатная температура; 2 — фаза перехода от максимально допустимой к минимально допустимой температуры приборов; 3 — минимально допустимая температура приборов; 4 — максимально допустимая температура приборов.

 

Рисунок 1 - Зависимость количества отказов приборов космических аппаратов от окружающей температуры.

 

1 — ферменная конструкция, к которой подвешены коллимирующие зеркала; 2, 11— направление потока воздуха при вакуумировании; 3 — диффузионный насос; 6 — рабочая часть камеры; 7 — стенка, охлаждаемая жидким азотом; 8 — установка для имитации солнечного излучения; 9 — мозаичная система линз; 10 — стенка, охлаждаемая жидким азотом; 11 — коллимирующие зеркала; 12 — платформа обслуживания.

 

Рисунок2 - Схема барокамеры [правая половина условно повернута на 45 градусов, чтобы был виден диффузионный насос].

 

Практический опыт, однако, вскоре показал, что экспериментальная техника должна быть более совершенной, прежде всего в аспекте имитации внешних тепловых потоков. В результате в 60-е годы в разных странах начали проводиться работы по созданию имитаторов солнечного излучения. Их применение, кроме более полного исследования тепловых режимов космических аппаратов, позволяло также решать широкий круг других весьма важных задач: испытывать оптические приборы системы ориентации и солнечные батареи, снабжающие аппарат электрической энергией, изучать влияние излучения Солнца на свойства материалов и т.д.

Первоначально в качестве источников излучения применялись угольно-дуговые лампы, достаточно хорошо имитировавшие спектральное распределение энергии Солнца во всем диапазоне длин волн, кроме ультрафиолетовой области {0,2–0,4 мкм), где недостаток мощности можно было компенсировать с помощью дополнительных источников. Однако этот вид ламп имел ряд существенных недостатков; в частности, из-за быстрого сгорания положительного электрода (для дуги мощностью 10 кВт скорость сгорания составляла 0,5 м/ч) его постоянно приходилось заменять новым, кроме того, механизм подачи электродов был сложен, нужно было защищать элементы оптической системы (зеркала, отражающие и преломляющие свет, линзы и пр.) от загрязнения продуктами сгорания.

Поэтому начали применяться лампы с газовым наполнением (ксеноновые, ртутно-ксеноновые), сочетающие в себе яркость угольной дуги с удобством эксплуатации. Вместе с тем и эти лампы имели недостатки. Так, например, они имитировали солнечный спектр хуже, чем угольно-дуговые лампы. В процессе развития оба типа ламп совершенствовались: разрабатывался нерасходуемый отрицательный электрод в угольно-дуговой лампе, улучшалась имитация солнечного спектра за счет введения дополнительных газов в ксеноновые и ртутно-ксеноновые лампы и т.д.

Для создания необходимой интенсивности теплового потока применяется большое количество ламп, располагающихся так, чтобы на испытываемом объекте не появлялось тени или сильно нагреваемых мест за счет взаимного перекрытия лучей от отдельных светильников. Лучи света направляются в камеру с помощью специальных оптических систем, отличающихся большим разнообразием конструкции. Вот, например, как устроена оптическая система одной из моделирующих установок (рис. 3).

Поток лучей создается солнечным имитатором, расположенным в 10-метровой надстройке над цилиндрической барокамерой высотой порядка 14 м и диаметром 8 м. Источником лучистой энергии служат ртутно-ксеноновые лампы (9) мощностью по 2,5 кВт, расположенные вне камеры на щите 1. Таких ламп свыше 130, лучи от них собираются параболоидным зеркалом (2) и направляются на выпуклое зеркало 3. Последнее состоит из 19 шестигранников с диаметром описывающих их окружностей, равным 0,165 м. Этим зеркалом пучок лучей направляется через линзу (4} и попадает на рассеивающее зеркало (5), посылающее, в свою очередь, эти лучи на главное параболоидное зеркало (6), формирующее поток в рабочей зоне камеры (7).

Каждая лампа освещает свой участок в рабочей зоне и снабжена устройством для регулировки с главного пульта управления. Зеркало (5) имеет диаметр 0,765 м и состоит из 1150 охлаждаемых водой отдельных параболоидных зеркал, изготовленных из нержавеющей стали. Так как зеркало (5) создает в рабочей зоне теневой участок, имеется вспомогательная оптическая система, освещающая этот участок (на рис. 3 не показана).

 

Рисунок 3 - Оптическая система экспериментальной вакуумной установки.

 

Увеличение размеров космических аппаратов закономерно вызывало необходимость в создании камер большого объема. В начале 60-х годов начинают появляться камеры объемом свыше 50 м3 и даже свыше 500 м3. К концу 60-х годов в США, например, насчитывалось 14 камер объемом свыше 1000 м3 (камера, предназначавшаяся для испытания космического корабля "Аполлон", имела объем 11 233 м3).

Как методы имитации температуры и внешних тепловых потоков, так и методы создания космического вакуума в таких установках претерпели существенные изменения. Действительно, в более крупных установках требуются, например, более высокие скорости откачки газов, так как внутренние поверхности стенок камер в вакууме выделяют пары и газы, количество которых при прочих равных условиях прямо пропорционально размерам камер. Кроме того, в больших установках, как правило, бывает значительной длина уплотнений, через которые в барокамеру проникает воздух. Наконец, на количество выделяющихся паров и газов влияют вспомогательное оборудование и размеры испытываемых объектов, имеющих в большинстве случаев материалы с большим газоотделением (все органические материалы, резина и т. д.).

Однако поддержание необходимого уровня вакуума в больших камерах путем увеличения скорости откачки с помощью насосов становится технически сложным, и поэтому решение этой задачи пошло по другому пути — с помощью криогенной откачки. С этой целью в камере предусматривались участки (криогенные панели), охлаждаемые жидким водородом (точка кипения при нормальном давлении составляет 20 К) или газообразным гелием (11 К). Молекулы остаточного газа, попадая на эти панели, "замораживаются", что приводит к понижению давления в камере. Криогенные панели размещаются в пространстве между другим экраном, охлаждаемым жидким азотом.

Охлаждать гелием целиком все экраны камеры технически сложно и экономически невыгодно, так как в этом случае, в частности, первоначальная стоимость установки и эксплуатационные расходы становятся весьма большими. Использование криогенных панелей позволяет с минимальными затратами решить задачу о поддержании необходимого вакуума в камерах. В качестве основных используются чаще всего диффузионные насосы, хотя в ряде случаев применяются и другие их виды: ионно-сорбционные, титановые сублимационные, турбомолекулярные и др.

Так как стоимость космических аппаратов весьма высокая, тепловые испытания иногда проводят на специальных тепловых макетах, на которых вместо аппаратуры применяются имитаторы. На таком макете в разных его местах размещаются температурные датчики, чтобы по их показаниям можно было составить полное представление о тепловом режиме космического аппарата. Тепловой макет устанавливают в барокамере, производят откачку из нее газов, охлаждают ее экраны. Затем включают солнечные имитаторы и начинают испытания.

С помощью специального устройства макет вращается, имитируя изменение положения аппарата относительно Солнца в ходе его космического полета. Имитаторы аппаратуры работают по заданным программам, воспроизводя тепловыделение приборов в разных режимах "полета". Показания датчиков автоматически записываются на специальных приборах. Если в ходе испытаний обнаружится, что система терморегулировании работает неудовлетворительно, в ее конструкцию вносятся соответствующие изменения, и в случае необходимости вновь проводятся испытания для определения эффективности этих изменений.

В наземных условиях проводится и имитация теплового режима космических аппаратов на участках полета в атмосфере планет. При этом в термобарокамерах воспроизводятся два основных параметра: давление ("высота") окружающей среды и температура поверхности космического аппарата. Нагрев поверхности испытуемых объектов производится специальными нагревателями, например инфракрасными вольфрамокварцевыми радиационными нагревателями. Такие нагреватели состоят из трубок, изготовленных из кварцевого порошка, с навитой на них вольфрамовой нитью накала. Они монтируются в керамические рефлекторы, отражающие тепловые потоки. Существующие нагреватели имеют температуру нити 3000° С. В качестве нагревателей используются также и кварцевые лампы, графитовые оболочки и другие устройства.

Методика испытаний предусматривает следующую последовательность операций. Подготовленное к испытаниям изделие тщательно очищают от всевозможных загрязнений, которые могут ухудшить вакуум. Затем его устанавливают на имитаторе орбиты. К РЭС подключают контрольно-измерительную аппаратуру и проверяют в нормальных условиях работу бортовых систем, контрольно- измерительной аппаратуры и программно-временного устройства, задающего режим в испытательной камере. Запускают систему вакуумирования, а после достижения давления примерно 0,01 Па включают криогенную систему охлаждения экранов. По команде программно- временного устройства, когда в камере установится требуемый режим испытаний, включают имитаторы внешних лучистых потоков, имитаторы орбиты и бортовые РЭС.

Продолжительность эксперимента определяется условиями полета и цикличностью работы РЭС. Параметры испытательного режима (давление, температура и т.д.) передаются на пульт управления с помощью бортовой телеметрической аппаратуры.

 


Date: 2015-07-27; view: 3866; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию