Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Пример использования теории подобия





Следует иметь в виду, что весьма сложная математическая модель описания конвективной теплоотдачи в общем случае не позволяет выполнить точное моделирование всех процессов. Поэтому в курсовой работе используются упрощенные приёмы теории подобия.

Пусть необходимо вычислить коэффициент теплоотдачи при течении воды в трубках водяного подогревателя. Массовый расход воды равен G = 16670кг/час, её плотность – ρ = 1000кг/м3, температура воды t = 110°С. Площадь сечения всех трубок теплообменника равна f = 0,00507м2, а внутренний диаметр одной трубки – d = 13,2мм.

Определяем число Рейнольдса при течении воды в трубках (для идентификации режима течения жидкости и установления динамического условия однозначности).

Re = w*d/ν,

где:

w = G/(ρ*f) = 16670/(3600*1000*0,00507) = 0,913м/с – скорость течения воды в трубках.

 

По таблице №1 приложения методического пособия определяем кинематический коэффициент вязкости воды при температуре t = 110°С – ν = 0,27210-6м2/c и число Прандтля воды – Pr = 1,6.

Изм.
Лист
№ докум.
Подпись
Дата
Лист
 
КУРСОВАЯ РАБОТА

 

Тогда, число Рейнольдса

Re = 0,913*0.0132/0,27210-6м2 = 44300

При таком числе Рейнольдса наблюдается развитое турбулентное течение воды и потому влиянием естественной конвекции на теплоотдачу можно пренебречь. Такой физической модели течения воды соответствует критериальная зависимость для определения теплоотдачи

Nu = 0,021*Re0,8*Pr0,43

В этой зависимости использовано среднее по длине трубы значение числа Нуссельта и, следовательно, в результате будет получено среднеинтегральное значение коэффициента теплоотдачи. Кроме того, эта зависимость не учитывает переменность свойств капельной жидкости в зависимости от температуры. Это следует иметь в виду, т.к. эти факторы различают реальную физическую модель и условия эксперимента.

 

Итак, Nu = 0,021*443000.8*1,60.43 = 134

и коэффициент теплоотдачи

α = Nu*λ/d = 134*0,685/0,0132 = 6950Вт/(м2*°С)

 

В этой зависимости λ = 0,685Вт/(м*°С) – коэффициент теплопроводности воды (таблица №1, Приложение).

Итак, приведен пример, который наглядно показывает, насколько существенно теория подобия упрощает расчёты конвективной теплоотдачи.

 

Изм.
Лист
№ докум.
Подпись
Дата
Лист
 
КУРСОВАЯ РАБОТА


4.4. Основные положения теплового и компоновочного расчётов теплообменных аппаратов.

Изм.
Лист
№ докум.
Подпись
Дата
Лист
 
КУРСОВАЯ РАБОТА

Основные понятия и определения, формулировка задачи.

В предлагаемых курсовых работах расчёту подлежат теплообменные аппараты (или теплообменники), называемые рекуператорами. Рекуператоры – это теплообменники, в которых две текучие среды, имеющие разные температуры, обмениваются теплотой через разделяющую их стенку. Эти среды - теплоносители - могут быть как жидкими, так и газообразными веществами. В процессе переноса теплоты они могут сохранять, но могут и изменять своё фазовое состояние – в теплообменном аппарате может происходить процесс кипения жидкости или процесс конденсации газа.

Процессы в теплообменных аппаратах могут происходить как стационарные, так и нестационарные – неустановившиеся. В предлагаемых курсовых работах рассматриваются стационарные рекуператоры.

В рекуперативных теплообменниках процесс распространения теплоты в пространстве осуществляется теплопередачей. Каждый из двух текучих теплоносителей при движении в теплообменнике обменивается теплотой с его стенкой в результате конвективной теплоотдачи, а через стенку теплота распространяется теплопроводностью. Таким образом, одно из уравнений, описывающих процесс распространения теплоты в рекуператоре – это уравнение теплопередачи.

Понятно также, что при распространении теплоты в рекуператоре один из теплоносителей отдаёт тепло, а второй именно это количество тепла воспринимает. Отсюда следует, что вторым уравнением для расчёта теплообменного аппарата должно служить уравнение теплового баланса.

Таким образом, тепловой расчёт рекуператора сводится к совместному решению уравнений теплового баланса и теплопередачи.

 

4.4.2. Уравнение теплового баланса

Изм.
Лист
№ докум.
Подпись
Дата
Лист
 
КУРСОВАЯ РАБОТА

В теплообменных аппаратах, как правило, изменение давления по ходу движения теплоносителя невелико. Так проектируют теплообменники из-за стремления уменьшить расходы энергии на их эксплуатацию. В то же время, из курса “Термодинамики” известно, что в изобарном процессе (давление теплоносителя неизменно) подведенная (отведенная) теплота изменяет энтальпию теплоносителя

dQ = G*di

В этом уравнении:

Q – тепловой поток (Дж/c);

G – массовый расход теплоносителя (кг/с);

i – удельная энтальпия теплоносителя (Дж/кг).

 

Интегрируя это уравнение, получим для всего процесса теплопередачи:

Q = G*(i'' - i').

Здесь и далее обозначения параметров со штрихом относятся к параметрам теплоносителя перед теплообменником (на входе), а с двумя штрихами – после теплообменника (на выходе).

Так как в теплообменном аппарате теплота от горячего теплоносителя воспринимается холодным теплоносителем, то уравнение теплового баланса запишется так:

Q = G1*(i'1 – i''1) = G2*(i''2 - i'2).

 

Здесь и далее подстрочный индекс 1 относится к параметрам горячего теплоносителя, а индекс 2 – к параметрам холодного теплоносителя.

Полагая, что удельная массовая теплоёмкость теплоносителя величина неизменная и используя известное из “Термодинамики” соотношение

i = cp*t,

получим:

C1/C2 = (t''2 - t'2)/(t'1 - t''1)

 

В этом уравнении С1 = G1*сp1 и С2 = G2*сp2 – полная теплоёмкость массового расхода теплоносителя или его водяной эквивалент.

Изм.
Лист
№ докум.
Подпись
Дата
Лист
 
КУРСОВАЯ РАБОТА

Последнее уравнение показывает, что отношение изменений температур однофазных теплоносителей в теплообменнике обратно пропорционально отношению водяных эквивалентов теплоносителей. Для случая однофазных теплоносителей уравнение теплового баланса используется в приведенном виде.

Для случая, когда один из теплоносителей претерпевает в теплообменнике фазовый переход от степени сухости 1 до степени сухости пара 0 (при полной конденсации насыщенного влажного пара), уравнение теплового баланса принимает следующий вид:

Q = G1*r = G2*cp2*(t''2 - t'2),

где r – скрытая теплота парообразования теплоносителя.

 

Date: 2015-07-27; view: 305; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию