Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Расчет структур, напряженных осадкой опор





4.30. Разность отметок опирания по контуру структурных плит должна назначаться из условия максимального выравнивания усилии в элементах (см. п. 1.26).

Система канонических уравнений метода сил для структур, напряженных осадкой опор, имеет вид

(4.43)

где δ ij - перемещение точки i от единичной реакции отброшенной связи в точке j; X i - реакция отброшенной связи; δi F - перемещение i -той точки от внешней нагрузки в основной системе; ∆i - разность отметок опирания в точке.

4.31. Система уравнений (4.43) имеет бесчисленное множество решений.

Из имеющегося множества рекомендуется находить одно решение, при котором расходуется минимум металла. При атом осуществляется минимизация целевой аут-функции [11]

(4.44)

Здесь

j - текущая нумерация типоразмеров; m - количество типоразмеров; i - текущая нумерация отметок опирания; k - количество отметок опирания; n (j) - количество стержней, принадлежащих j -ому типоразмеру; R - расчетное сопротивление; - усилие в n -ом стержне j -ого типоразмера от единичного воздействия k -ой связи; N (j)ng - усилие в этом же стержне от внешней нагрузки в основной системе; l (j)- длина стержня j -ого типоразмера; A(j)0 - минимальная площадь поперечного сечения стержня, определяемая по предельной гибкости; А (j)φ - дополнительная площадь приближенно учитывающая влияние коэффициента продольного изгиба на площадь сжатых стержней (для растянутыхβ(j)max = 0); β(j)max - коэффициент принимаемый по [8].

Основная система представляет собой конструкцию с отброшенными связями, за счет высот которых производится варьирование отметок опирания. Изменение отметок опирания достигается, например, постановкой прокладок различной толщины на оголовки колонн.

Методы решения оптимизационной задачи (4.44) указаны в (11, 12). В результате решения отыскивается вектор оптимальных величин реакций отброшенных колонн и после подстановки их в систему (4.43) определяется искомая разность отметок опирания ∆i.

Расчет рекомендуется производить с учетом монтажных стадий, поскольку расчетная схема конструкции может изменяться в процессе создания предварительного напряжения.

Задача решается при наперед заданном соотношении жесткостей между стержнями и числе типоразмеров. При ином соотношении жесткостей и ином числе типоразмеров будет иным и результат расчета.

Во всех случаях прогибы от нормативных нагрузок не должны превышать предельных.

Выравнивание усилий осадкой опор возможно не только в прямоугольных структурах, шарнирно-опертых по контуру, но и в более общем случае - при неразрезных структурных плитах [9]

РАСЧЕТ СТРУКТУРНЫХ ПЛИТ ПРИ УПРУГОПЛАСТИЧЕСКОЙ РАБОТЕ МАТЕРИАЛА

4.32. В структурных плитах из-за высокой степени их статической неопределимости, а также унификации элементов недоиспользуется несущая способность. В тех случаях, когда прогибы данных систем под действием расчетных нагрузок меньше допустимых, рекомендуется использовать резервы несущей способности конструкций за счет работы отдельных стержней в упругопластической стадии. Это позволяет снизить расход металла на конструкцию, выровнять усилия в элементах и уменьшить число типоразмеров стержней.

4.33. Развитие пластических деформаций в структурных плитах целесообразно допускать в случае, когда имеется запас по прогибам не менее 20 % допустимых величин. В этом случае можно уменьшить количество типоразмеров стержней при незначительном (до 7 %) снижении общей массы покрытия. В случае когда имеется большой запас по прогибам (30 - 40 %), можно одновременно с уменьшением количества типоразмеров стержней добиться большей экономии металла.

Экономическая эффективность использования пластической области работы стержней тем выше, чем больше степень статической неопределимости (с учетом внешних связей). Например, при контурном опирании целесообразно предусмотреть большие запасы по прогибам с тем, чтобы в упругопластической стадии уменьшить количество типоразмеров и сократить расход материала.

4.34. Развитие пластических деформаций допускается лишь в тех стержнях, исключение которых из работы конструкции не превращает ее в геометрически изменяемую систему. В растянутых стержнях в упругопластической стадии возможно некоторое увеличение усилий в соответствии с действительной диаграммой работы материала. В сжатых стержнях возможен переход в запредельную область работы при некотором уменьшении в них усилий.

Как показывают экспериментально-теоретические исследования, внецентренно-сжатые стержни после достижения предельных усилий способны выдерживать значительную часть от этих усилии, если сближение их концов ограничены перемещениями узлов конструкции в целом [13].

4.35. Расчет структурных плит при упругопластической работе материала рекомендуется проводить при одновременном учете физической и геометрической нелинейности, используя шаговый метод нагружения (см. п.п. 4.15 - 4.17). В этом случае мгновенная матрица жесткости конструкции в целом должна определяться с учетом изменения жесткостей элементов в процессе нагружения в упругой и упругопластической стадиях.

Мгновенные матрицы жесткости стержней определяются по формуле (4.29) в соответствии с указаниями п. 4.17.

Зависимости N (ε) рекомендуется определять для типовых элементов на ЭВМ, с помощью программы, алгоритм которой' изложен в п. 4.36, пли экспериментальным путем и задавать в качестве исходных данных к программе расчета структур с учетом физической и геометрической нелинейности.

4.36. Алгоритм расчета внецентренно сжатых стержней с учетом развития пластических деформаций рекомендуется строить на основе аппроксимации стержня дискретной моделью, учитывающей развитие пластических деформаций как по длине стержня, так и по глубине упругого ядра, а также соответствующее деформациям смещение нейтральной оси. Расчет рекомендуется проводить по деформированной схеме в соответствии с методикой, изложенной в п.п. 4.15, 4.16, шаговым методом па заданные сближения концов стержня. Это позволяет исследовать его поведение до полного разрушения, включая стадию работы после достижения предельного усилия.

Ниже приводится построение алгоритма расчета стержня, симметричного относительно плоскости изгиба.

Сплошной стержень заменяется шарнирно-стержневой моделью, образуемой верхним и нижним поясами, распорками и крестовой решеткой (рис. 4.9). Количество панелей по длине стержня рекомендуется задавать в пределах от 10 до 20. Эксцентриситет приложения продольной силы и возможные начальные несовершенства задаются соответствующими координатами узлов модели. Концевые участки стержня аппроксимируются стержнями, сходящимися в точках приложения продольной силы. Размеры этих участков е рекомендуется принимать существенно меньшими размера панели l m, а сечения аппроксимирующих стержней А s и A i назначать в зависимости от площади сечения и момента инерции упругой части сплошного стержня в пределах крайних панелей.

Формулы перехода от сплошного стержня к стержневой модели в пределах каждого участка, полученные из уравнений соответствия их деформаций при внецентренном сжатии [14], имеют вид

Рис. 4.9. Схема аппроксимации сплошного стержня дискретной моделью

Рис. 4.10. Обозначения геометрических характеристик

а - стержневой модели; б - сечения сплошного стержня

Рис. 4.11. Диаграммы работы стержня Ø 76×5 мм и длиной 3 м в упруго-пластической стадии

а - зависимости продольной силы N от относительного сближения концов стержня ε при эксцентриситетах приложения продольной силы ε = 0,01; 0,3 и 1 см (соответственно кривые 1, 2, 3); б - зависимости мгновенной жесткости стержня D n от относительного сближения его концов при тех же значениях эксцентриситетов (точками показан момент наступления пластических деформаций)

(4.45)

где А ms, A mi, A d, A s и A i - соответственно сечения верхнего и нижнего поясов, диагоналей и крайних стержней; А, I - площадь сечения и момент инерции упругой части сплошного стержня в пределах соответствующего участка.

Обозначения геометрических характеристик для стержневой модели и сечения сплошного стержня указаны соответственно на рис. 4.10, а и 4.10, б.

Сечения крайних распорок стержневой' модели принимаются равными А k = 2 А d, где А d - сечения диагоналей в крайних панелях.

Сечения остальных распорок принимаются равными A k = A dl + A dr, где A dl и A dr - сечения диагоналей в смежных панелях.

Сечение сплошного стержня разбивается на площадки, как это показано на рис. 4.10, б, и задается в исходных данных в виде массивов их сечений' и расстояний центров тяжести до крайних волокон. Количество площадок по высоте сечения может быть произвольным. Диаграмма работы материала задается в исходных данных в виде кусочно-ломаной функции в табличной форме. Очертание ее может соответствовать действительной диаграмме работы материала.

Расчет рекомендуется вести по деформированной схеме шаговым методом на заданные сближения концов стержня. В этом случае на каждом этапе расчета приращение нагрузки, вызывающее сближение концов стержня, будет искомой величиной. Процедуру шагового метода рекомендуется строить таким образом, чтобы на каждом этапе расчета производился анализ сближения узлов модели в пределах каждой панели. При возникновении деформаций текучести материала должен производиться пересчет сечений соответствующих элементов модели в зависимости от глубины упругого ядра. В этом случае сечение каждой из площадок по высоте стержня h должно заменяться на величину А j = А j исх Е (ε)j/ E j в соответствии с заданной диаграммой работы материала. Затем должны определяться приведенные значения А и I стержня в пределах каждой панели, участвующие в упругой стадии работы и по формулам (4.45) производиться пересчет сечений элементов модели.

В качестве примера на рис. 4.11, а, б представлены зависимости продольной силы N и мгновенной жесткости D n стержня трубчатого сечения Ø 76×5 и длиной 3 м от относительного сближения его концов при эксцентриситетах приложения продольной' силы 0,01; 0,3 и 1 см (соответственно кривые 1, 2 и 3). Материал стержня - сталь марки С 38/23 с пределом текучести σт = 230 МПа. В расчетах принята идеализированная диаграмма работы материала. Крестиками показан момент наступления пластических деформаций.

Как видно из рисунка, мгновенная жесткость внецентренно сжатого стержня на действие продольной силы существенно снижается уже в упругой стадии работы. После достижения предельного усилия жесткость принимает отрицательные значения. Продольное усилие при этом начинает падать. С увеличением эксцентриситета эти зависимости имеют более плавный характер. Для центрально-сжатого стержня момент потерн устойчивости характеризуется резким его искривлением и падением сжимающего усилия.

 

Date: 2015-07-27; view: 503; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию