Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Превращения в наклепанном металле при нагреве. Изменения его структуры и свойств





Наклепанный металл термодинамически неустойчив, стремит­ся возвратиться в первоначальное, равновесное состояние, вос­становить свою структуру и свойства. При низких температурах (не более 0,1 Тпл) этот процесс затруднен и наклепанное состо­яние может сохраняться довольно долго.

При нагреве пластически деформированного металла сообща­емая ему тепловая энергия повышает амплитуду колебаний ато­мов, вследствие чего повышается их диффузионная подвижность. При невысоком нагреве (0, 2 - 0,3 Тпл) за счет активизации процессов самодиффузии происходит перераспределение точечных и линейных дефектов в каждом зерне. Часть из них перемещается на границы зерна, часть аннигилирует, а часть перестраивается, образуя дислокационные стенки, т. е. границы субзерен. Уменьшение общей плотности дефектов строения, снижение внутренних напряжений сопровождается незначительным (на 10 - 15 % от наклепанного) снижением прочностных свойств при одновременном повышении пластичности. Заметных изменений микроструктуры при таком нагреве не происходит (рис. 14. 3).

При более высоком нагреве (0,3 - 0,4 Тпл) поисходит рез­кое изменение микроструктуры и механических свойств. На базе вытянутых в направлении деформирования зерен (волокон) зарож­даются и вырастают новые равноосные зерна с меньшим количест­вом дефектов. Это явление носит название рекристаллизации. Размер рекристаллизованных зерен значительно зависит от степени предшествующей пластической деформации. Как видно на рис. 14.4, он может оказаться больше или меньше первоначального. Объясняется это явление тем, что при малых (5 - 15%) деформациях возникает мало зародышей рекристал­лизации и зерна вырастают очень крупными. Такую степень дефор­мации называют критической (εкр). При дальнейшем увеличении степени деформации размер рекристаллизованных зерен умень­шается. Величина зерна оказывает большое влияние на свойства металла. Мелкозернистый металл обладает повышенной прочностью и вязкостью (стойкостью к удару). Если степень деформации очень мала (меньше εкр), малы искажения решетки, исходные границы между зернами не разрушены и рекристаллизации не проис­ходит.

Во время рекристаллизации происходит снижение плотности дислокации до первоначального (106 - 118см-2 ) уровня и высвобо­ждается накопленная в процессе холодной пластической деформа­ции энергия. Наклеп практически полностью снимается, и пластич­ность металла восстанавливается (рис. 13.3). Наименьшую темпе­ратуру начала рекристаллизации называют температур­ным порогом рекристаллизации. Для технически чистых металлов она составляет около 0, 4 Тпл, для очень чистых метал­лов до 0,1 - 0, 2 Тпл, а для сплавов возрастает до 0, 5 - 0, 6 Тпл. Чтобы обеспечить полноту снятия наклепа и высокую скорость процесса рекристаллизации, деформированный металл нагревают на 150 - 200 градусов выше порога рекристаллизации.

Если пластическую деформацию проводить выше порога рек­ристаллизации, то процессы наклепа и рекристаллизация будут протекать одновременно, в результате чего в деформированном металле остаточного наклепа может не быть. Такую деформацию называют горячей.

 

 

 

Рис. 14.3. Схема изменения свойств и структуры наклепанного металла при нагреве:

I - возврат; П - первичная рекристаллизация;

Ш - собирательная рекристаллизация; IV - вторичная рекристаллизация;

а - наклепанный металл; б - начало первичной рекристаллизации; в - завершение первичной рекристаллизации; г - собирательн ая рекристаллизация; д - вторичная рекристаллизация д - вторичная рекристаллизация


 

 

Рис. 14. 4. Влияние степени холодной деформаций на вели­чину зерна при рекристаллизации:

α0 - размер исходного зерна

Во время длительной выдержки при температуре выше порога рекристаллизации будет происходить рост одних рекристаллизо-анных зерен за счет других. Это явление носит название со­бирательной рекристаллизации (рис. 13. 3, г), а его движущей силой является стремление металла как термодинамиче­ской системы, к снижению уровня зернограничной энергии. Круп­нозернистый металл имеет меньшую суммарную поверхность границ, чем мелкозернистый, поэтому и уровень свободной энергии у него меньше.

 

Порядок выполнения работы и содержание отчета

1. Группу разделить на 3 подгруппы. Каждая подгруппа должна получить по три холоднодеформированных (с разной сте­пенью) образца алюминиевого сплава.

2. Изучить влияние степени деформации сплава на его твердость. Замер твердости производить на прессе Бринелля. Результаты замеров занести в табл. 13.1.

3. Изучить влияние температуры нагрева на изменение свойств и структуры деформированного сплава.

Образцы холоднодеформированного алюминиевого сплава

нагреть:

1-я подгруппа - на 150°С; 2-я подгруппа - на 300 С;

3-я подгруппа - на 450°С и выдержать при этих темпера­турах в течение 40 мин.

Измерить твердость образцов, результаты замеров занести в табл. 13.1. Построить график, показывающий изменение твердос­ти в зависимости от температуры нагрева, и указать примерную температуру начала рекристаллизации, найденную на основании полученных результатов и расчетным путем по формуле А. А. Бочвара (Трекр.≈ 0,5 Тпл, К).

Оценить размер зерна рекристаллизованного металла и сделать вывод о влиянии степени предшествующей деформации на величину рекристаллизованного зерна.

4. Составить отчет. Содержание отчета: название и цель работы, теоретические сведения, таблица, выводы, ответы на вопросы контрольных заданий.

 

Таблица 14. I

N п/п   Степень деформации,%   Твердость до нагрева, НВ   Твердость после нагрева, НВ    
 
150°С 300°С 450°С  
I            
             
             

Date: 2015-07-24; view: 1388; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию