Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Соответствует точке в плоскости комплексного переменного: i ALPHA e 4 page





===РИС.10 2. Второй аргумент связан с предполагаемым распадом протона. Вычисления, основанные на квантовой механике, показывают, что время жизни t| протона пропорционально p m|**4. Поэтому при уменьшении массы m| на 4-5 порядков время X t| уменьшится на 15-20 порядков и сравнится с временем t| p u существования Метагалактики. Подобная гипотетическая возможность привела бы практически к полному распаду вещества. Оба аргумента показывают, что масса m| должна быть X очень большой. Далее мы затронем вопрос о причинах доминантности калибровочной инвариантности в нашем мире. Можно построить множество калибровочно неинвариантных теорий, которые не реализуются в природе. Почему же существующие теории основываются на калибровочной инвариантности? Ответ на этот вопрос можно дать из "целесообразности" калибровочных теорий. В калибровочных теориях сохраняется заряд, а закон сохранения заряда - основа стабильности связанных состояний. В заключение отметим еще один важный факт. Квантовые числа элементарных частиц - спин, изотопический спин и даже странность, необходимы для существования многообразия устойчивых связанных состояний. Для простоты ограничимся анализом роли спина. Существование у элементарных частиц спина с полуцелым значением (HP/2; 3/2 HP) запрещает фермионам находиться в тождественных состояниях (принцип Паули). А принцип Паули лежит в основе периодической системы элементов. Если бы спин (а следовательно, и принцип Паули) отсутствовали, то все орбитальные электроны перешли бы на основную орбиту и вместо всего многоцветия периодической системы существовали бы только водородоподобные элементы. На этом, пожалуй, можно окончить рассмотрение приложений принципа целесообразности и перейти к рассмотрению антропного принципа. В физическом плане Земля - заурядная планета. Как известно, это положение в течение более полутора тысяч лет господства геоцентрической системы Птолемея полагалось научной и теологической ересью. После победы учения Коперника в полемическом пылу упустили одно обстоятельство. Да, действительно, ЗЕмля как физическое тело ничем не выделена. Однако эта планета единственная обитель цивилизации. А возникновение носителя цивилизации - человека вовсе не тривиально, а требует сочетания определенных конкретных физических условий. Это требование положено в основу антропного принципа. Мысли о связи между возникновением цивилизации и физическими законами начали высказываться (насколько известно автору) в 50-х годах. Например, А.Л.Зельманов утверждал, что во Вселенной возможно существование больших областей, где физические процессы протекают без свидетелей. Однако, по нашему мнению, антропный принцип как отражение определенных физических закономерностей получил права гражданства лишь после количественной интерпретации некоторых физических фактов. Этот прогресс связан с именами выдающихся английских и американских физиков и астрономов: Р.Дикке, С.Хокинса, М.Риса, Б.Картера, Д.Барроу. Наиболее лаконичное определение антропного принципа принадлежит Картеру, изменившему известный декартовский афоризм: "Я мыслю, следовательно, существую" (Cogito, ergo sum) на утверждение: "Я мыслю, следовательно, мир такой, какой он есть" (Cogito, ergo mundus talis est). На наш взгляд, самые большие достижения антропного принципа связаны с интерпретацией некоторых космологических соотношений и флюктуативности (малости) константы ALPHA| g сравнительно с 1. Приведем некоторые примеры успешного применения антропного принципа. Много десятилетий физики и астрономы размышляли над удивительной характеристикой Метагалактики - временем ее существования t| и константами микромира: u HP t| ~ --------- ALPHA|**-1. (66) u m| c**2 g e Здесь и в дальнейшем речь идет о соотношениях по порядку величины, однако, учитывая огромный разброс констант, входящих в соотношение (66), к нему следует отнестись достаточно серьезно. В основе антропной интерпретации лежит утверждение, что физические условия в Метагалактике максимально способствуют возникновению жизни. Мы не знаем достаточных условий для этого процесса, но можем сформулировать некоторые очевидные необходимые условия. Ясно, что для возникновения жизни необходимо длительное существование звезд и Метагалактики, тогда оптимальным условием будет равенство времен жизни звезд t| и Метагалактики t|. Напомним необходимый для s u понимания дальнейшего вывод фридмановской космологии: если средняя плотность вещества RO в Метагалактике RO > RO|, то c Метагалактика закрыта в том смысле, что наблюденное сейчас расширение Метагалактики сменится сжатием, если же RO < RO|, c то расширение будет продолжаться неограниченно (открытая Метагалактика). Величина RO| ~~ 10**-29 г*см**-3 называется c критической плотностью. Допустим, что Метагалактика закрыта, тогда по порядку величины время ее максимального расширения t

G M| / c**3, (67) u max u где M| - масса Метагалактики, которую можно представить через фундаментальные постоянные следующим образом: M| ~ ALPHA|**-2 * m|. (68) u g p Соотношение (68) можно рассматривать как аппроксимацию наблюдаемых данных о Метагалактике. Из теоретических соображений следует, что время жизни звезды по порядку величины представляется соотношением t| ~ ALPHA|**-1 * HP / (m|*c**2). (69) s g e Используя "антропное" равенство t| ~ t

Приходим к s u max равенству (66). Другим успешным применением антропного принципа является интерпретация эмпирического соотношения RO ~ RO|. (70) c Почему среди бесконечного числа возможностей природа выбрала именно соотношение (70)? Оказывается, что оно оптимально для появления жизни. Действительно, если RO >> RO|, то, как cс показывают расчеты, время t

Существования Метагалактики u max оказывается весьма малым (t|| сильно убывает с u max увеличением RO) и жизнь не успевает развиться. Если же RO << RO|, то опять же, как показывают расчеты, не могут c образоваться галактики, а следовательно, и звезды необходимые элементы возникновения жизни. Поэтому в Метагалактике, в которой существует "наблюдатель", должно выполняться соотношение (70). И наконец, последнее. Давно, в 1937 г., П.Дирак обратил внимание на удивительную малость величины ALPHA| ~~ 10**-38 g сравнительно с 1. До сих пор единственное успешное объяснение связано с антропным принципом. Необходимое условие возникновения "наблюдателя" - существование звезд. Время t| жизни звезды пропорционально ALPHA|**-1 (см. s g формулу (69)). Поэтому, например, если увеличить ALPHA| на g порядок, соответственно уменьшается на порядок время существования звезды. Из палеонтологии известно, что жизнь на Земле возникла в эпоху, отстоящую от нашей примерно на 3*10**9 лет. Это время составляет всего 30% от времени жизни Солнца. Цивилизация же возникла в Междуречье примерно 10**4 лет тому назад, что составляет ничтожную долю (10**-6) от времени существования Солнца. Поэтому если бы Солнце существовало 10**9 лет (на порядок меньше его действительного времени жизни), то мы бы не имели возможности обсуждать вопросы мироздания. Таковы некоторые примеры успешного применения антропного принципа. В заключение полезно упомянуть об одной нерешенной проблеме, имеющей непосредственное отношение к антропному принципу. Несомненно, что устойчивость сложных молекул, определяющих генетический код (например, молекул ДНК), зависит от констант m| и ALPHA|. Подобная зависимость предопределяется тем, что в конечном счете химические связи обуславливаются параметрами атомов, входящих в состав молекул. Основными параметрами атомов являются величины m| и ALPHA|. Поэтому и устойчивость биологических молекул также зависит от этих величин. Было бы полезно исследовать эту устойчивость в зависимости от констант m| ALPHA|. Насколько известно автору, подобная задача не решалась. 8. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ ОБ "ИСТИННОМ" ФИЗИЧЕСКОМ ПРОСТРАНСТВЕ Подведем некоторые итоги. Работа Эренфеста, демонстрирующая, что в пространствах с размерностью N>=4 отсутствуют аналоги планет и атомов, и трактуемая изолированно от всего прогресса физики, может рассматриваться как некая экзотика. Однако этот курьез превращается в основополагающий факт, если его рассматривать в свете многочисленных приложений принципа целесообразности и антропного принципа, а также геометрической интерпретации калибровочных теорий. Большая неустойчивость структуры Метагалактики к численным значениям многих фундаментальных постоянных и их флюктуативность в рядах подобных им величин может быть интерпретирована на единственной физической основе. Эта основа (если ее не связывать с вмешательством провидения) базируется на гипотезе существования большого ансамбля метагалактик со своими значениями фундаментальных постоянных, в том числе и размерности физического пространства N. Эти константы формируются в момент возникновения метагалактик`. Наблюдаемое значение размерности - лишь проявление случайных процессов, сопровождающих рождение метагалактик. Размерность N и другие "истинные" характеристики физического пространства проявляются либо вблизи планковской области, либо при расстояниях, превышающих размеры Метагалактики (10**28 см). Физическое (наблюдаемое) пространство формируется одновременно с другими характеристиками Метагалактики при временах 0 < t| ~< 10**-43 с. Здесь нужно подчеркнуть одно u важное, принципиальное обстоятельство. Оставаясь лишь в рамках математических представлений и закрывая глаза на многочисленные связи между константами, их флюктуативность и проблемы объединения теории поля, мы можем считать оба современных описания физической реальности при N=3 (стандартный формализм Лагранжа) и N>3 (многомерная теория типа Калуцы) равноправными. Сейчас отсутствуют противоречия между экспериментальными данными об элементарных частицах и их описанием, основанным на привычном лагранжевом формализме в пространстве Минковского (Римана) с размерностью пространственных координат N=3. Однако возникло слишком много вопросов, которые такая теория не способна объяснить, чтобы их можно было игнорировать. -----------------------------------------------------------` Некоторые модели образования метагалактик рассматриваются в следующем разделе. ----------------------------------------------------------- В настоящее время единственный способ решить эти вопросы - допустить, что на малых (планковских) расстояниях истинное физическое пространство имеет сложную структуру. Кажется наиболее естественным, что эта структура в первом приближении моделируется пространствами типа Калуца-Клейна. Сейчас говорят о компактных сферических пространствах с размерностью d=6 или 7, но представляется почти очевидным, что подобное представление о физическом пространстве отражает лишь уровень нашего понимания законов природы. В действительности эти пространства могут иметь существенно более сложную структуру природу и более высокую размерность. Возможно, что говорить о конкретной размерности в планковской области бессмысленно. В этой области, вероятно, все флюктуирует, изменяется во времени и можно говорить лишь об очень грубо усредненных величинах. Нельзя, например, исключить, что в планковской области размерность имеет дробное значение. Чтобы понять это утверждение, вообразим ситуацию, когда близорукий человек издалека рассматривает сильно изрезанный холмистый берег. Ему этот берег покажется одномерной линией. Однако по мере приближения к берегу (или при использовании оптических приборов) будут становиться все более различимыми его неровные контуры, очертания холмов. Рельеф (а следовательно, и размерность) будет зависеть от ракурса и расстояния до берега. Усредняя "измеренную" размерность по всем ракурсам и расстояниям, можно получить нецелое число. Приведенный пример - простейшая статическая иллюстрация зависимости размерности от положения "наблюдателя" или технических средств, находящихся в его распоряжении. В планковской же области, по-видимому, пространство дышит, оно нестатично, что является дополнительной причиной изменения размерности и появления дробных ее значений. Если бы в нашем распоряжении были приборы, позволяющие исследовать геометрию при приближении к планковской области, то, вероятно, нам представилось бы крайне любопытное зрелище: характеристики пространства меняются со временем, а с ними и наблюдаемые свойства объектов. 9. КАК ВОЗНИКАЮТ МЕТАГАЛАКТИКИ Время от времени вспыхивают дискуссии на тему: можно ли построить "окончательную" физическую теорию, описывающую количественно любое физическое явление. Иначе говоря, обсуждается вопрос: можно ли все физические законы закодировать в единое уравнение или систему уравнений? Вероятно, поставленный вопрос эквивалентен вопросу: можно ли создать теорию происхождения и эволюции Метагалактики и Вселенной? Если бы удалось построить такую теорию, то она с неизбежностью могла бы описать все явления, несомненно более простые, чем торжественный акт - рождение, и развитие самых больших и сложных объектов, которые может представить себе человеческая фантазия. Именно поэтому нет ни теории происхождения Метагалактики, ни всеобъемлющей физической теории. Существуют лишь отдельные ее фрагменты, число которых, так же как связи между ними, быстро возрастает со временем. Еще больший оптимизм внушает то обстоятельство, что сейчас можно сравнительно четко сформулировать те вопросы (проблемы), которые нужно решить для создания теории происхождения Метагалактики (Вселенной). 1. Создать последовательную квантовую теорию гравитации, что, вероятно, эквивалентно созданию единой теории поля. 2. Создать теорию физического вакуума, что, по-видимому, является частью единой теории поля. 3. Создать теорию происхождения фундаментальных постоянных. Вероятно, в первую очередь следует понять происхождение значений масс частиц. 4. Ясно понять природу физического пространства, и в первую очередь его размерности. Несмотря на столь солидный список нерешенных фундаментальных проблем, автор оптимистически оценивает ситуацию, поскольку в физике ясная постановка вопроса является действительно существенной предпосылкой его успешного разрешения. Кроме того, уже существующие фрагменты полной теории позволяют решить на модельном уровне часть из сформулированных проблем. Хотя отмеченные проблемы внешне кажутся независимыми (кроме первых двух), все они связаны одним важнейшим фактором - в большей или меньшей степени они относятся к планковской области. Вероятно, создание планковской физики означало бы и решение основных физических проблем. Фундаментальные физические законы формируются в планковской области, и в этом основная проблема. К этой области, кроме моделирования начала Метагалактики и изучения нестабильности протона, не видно никаких иных эмпирических подходов. Нам представляется, что именно ясное понимание взаимосвязи всех четырех проблем и роли планковской физики ключ к прогрессу создания единой теории, описывающей возникновение Метагалактики. Сейчас эти проблемы рассматриваются часто изолированно, и, на наш взгляд, непропорционально мало внимания уделяется последним двум из них. В одной из немногих работ, в которых обсуждается природа фундаментальных постоянных, в работе известного американского физика С.Вайнберга (совместно с Ф.Канделасом) затрагиваются в той или иной степени первая и две последние проблемы, но вне всякой связи с происхождением Метагалактики. Вероятно, в настоящее время разрыв между желаемым (объединением всех проблем) и реальностью (их разобщенностью) закономерен и отражает уровень наших знаний. Нужно, однако, ясно понимать, что конечная цель развития физики состоит в объединении усилий по комплексному решению всех проблем. Далее мы кратко очертим те трудности, которые непосредственно возникают при решении каждой из проблем в отдельности. В решении проблемы создания квантовой теории гравитации можно очертить два направления. В первом используется сравнительно традиционная квантовая теория в форме, предложенной Р.Фейнманом. Этот формализм применяется к гравитации как изолированному взаимодействию, однако в планковской области существенно усложняется пространство сравнительно с пространством Минковского (Римана). Трудности этого направления связаны со структурой константы ALPHA|. Эта гравитационная безразмерная константа g пропорциональна m**2 (m - масса, передаваемая во время взаимодействия). В этом отличие константы ALPHA| от ALPHA|, g e которая практически не зависит от m. Поэтому расходимости, бесконечности сопровождают почти все теории гравитации, трактуемой как изолированное явление. Сторонники первого направления не заботятся чрезмерно об устранении бесконечностей, возлагая надежды на то, что удачный выбор пространства в планковской области и взаимовлияние различных взаимодействий приведут в конечном счете к устранению бесконечностей. Лидер этого направления, замечательный физик С.Хокинг, сформулировал свое кредо в виде аналогии с поиском ключей под фонарем, "потому что там светло"`. -----------------------------------------------------------` Хокинг С. Пространственно-временная пена // Геометрические идеи в физике / Под ред. Ю.И.Манина. М.:Мир, 1983. С.47. ----------------------------------------------------------- Другое направление в квантовой теории гравитации с самого начала основывается на объединении всех взаимодействий (и даже всех частиц) в надежде, что такое суперобъединение приведет к компенсации бесконечностей. Пока удалось выполнить эту программу лишь в первых приближениях. Таким образом, квантовая гравитация - теория гравитации в планковской области - далека от завершения, хотя в этом направлении и имеется значительный прогресс. В теории физического вакуума основной проблемой является его чрезвычайно малая плотность энергии: RO| ~< 10**-29 г*см**-3. Эта цифра - следствие основного v космологического параметра - времени жизни Метагалактики и естественного допущения, что вакуум, как и любая другая форма материи, испытывает гравитационное притяжение. Эта цифра на десятки порядков меньше любой оценки, сделанной на основе теории размерности. Нельзя исключить, что RO| = 0. v Такое предположение привлекательно в том смысле, что именно такое тождество появляется в теориях, где бозоны и фермионы являются симметричными частицами (суперсимметрия, тождество всех свойств, кроме спина). Энергии бозонного и фермионного вакуумов имеют разные знаки, и поэтому их сумма обращается в нуль. Однако, как отмечалось ранее, в мире наблюдаемых частиц при массах m < 100 m| симметрия между фермионами и p бозонами отсутствует. Уже упоминалось, что современная теория практически бессильна предсказать или интерпретировать наблюдаемые фундаментальные константы, и в особенности спектр масс частиц и его иерархическую структуру. В ряде работ (в частности, в упомянутой статье Вайнберга-Канделаса) константа объединенного взаимодействия ALPHA| связывается с размерами r| компактного пространства u c (планковскими) по формуле ALPHA| = a * HP / (M| * c * r|), (71) u p c где a - множитель порядка единицы - определяется числом сортов частиц. Формула типа (71) - простейшее и поэтому естественное безразмерное отношение основных параметров планковской физики - квантовых размеров частицы с планковскими параметрами. В число этих параметров входит и масса M| = (HP * c / G)**(1/2) ~ 10**-5 г ~ 10**19 m|. p p Весьма активно разрабатываются модели компактификации размерностей пространства. Хотя процесс компактификации рассматривается как на квантовом, так и на классическом уровне, тем не менее практически во всех моделях заложено основное допущение - резкая анизотропия в начальных условиях, а взаимодействие соответствует закону всемирного тяготения или его обобщениям (например, ОТО). Чтобы понять физику компактификации, рассмотрим эволюцию гравитирующего эллипсоида (рис.11) с неизменной массой или энергией. Точки A и B, находящиеся вначале существенно ближе друг к другу, чем точки C и D, будут притягиваться значительно сильнее, чем точки C и D (закон 1/r**2). Поэтому с течением времени точки A и B будут сближаться, а точки C и D удаляться. Этот процесс будет продолжаться до тех пор, пока расстояния между точками A и B достигнут планковских размеров, что и означает компактификацию одной из координат. Подобную процедуру нетрудно обобщить на пространство любой целочисленной размерности N=D+d. D координат, расположенных вначале далеко друг от друга, будут удаляться, образуя пространство Евклида (Римана), а в d направлениях, в которых первоначальное возмущение было сжато, произойдет компактификация координат до планковских размеров. ===РИС.11 Из этого экскурса ясно, что мы далеки от законченной теории в планковской области. Однако мы знаем вполне достаточно, чтобы попытаться моделировать образование метагалактик. При подобной процедуре следует учесть следующие факторы: 1. Существование деситтеровской и фридмановской фаз эволюции метагалактик. 2. Фазовый переход между обеими стадиями. 3. "Истинную" структуру физического пространства. 4. Принцип целесообразности и антропный принцип. 5. Флюктуативность фундаментальных констант в ряду себе подобных. Сделаем два предположения. 1. В пространстве N измерений (N>=11) всегда существует физический вакуум. Для простоты можно базовое пространство представить как многомерное пространство Минковского. Разумеется, такое допущение простейшее, но не обязательное. 2. Плотность энергии вакуума как функция поля FI представляется кривыми на рис.7. Из этих предположений и сформулированных выше пяти постулатов можно нарисовать следующую картину образования Метагалактики. В метастабильном вакууме непрерывно возникают возмущения, нестабильности. Вследствие наличия потенциального барьера эти возмущения не успевают развиться. По образному выражению Дж.Уилера и С.Хокинга, вакуум пенится. Обычно возникают микровселенные с планковскими размерами. Однако иногда происходит раздувание области, в которой возникло возмущение, и последующая перестройка вакуума. В процессе развития анизотропных возмущений в вакууме происходит компактификация размерности. Огромная энергия вакуума расходуется на расширение метагалактик, образование новых частиц большой энергии и нагрев Метагалактики. Эта стадия представлена на температурной зависимости рис.8. Перестройка вакуума сопровождается переходом от деситтеровского расширения к фридмановскому режиму (рис.8). Такой переход можно объяснить следующим образом. На деситтеровской стадии плотность вакуума RO| >> RO| v м плотности вещества и излучения. При фазовом переходе плотность вакуума RO| резко уменьшается (RO| << RO|), и v v м возникают условия, необходимые для осуществления фридмановской стадии. Фундаментальные постоянные и физическое пространство формируются на этих самых первых мгновениях эволюции Вселенной и Метагалактики. Численные значения фундаментальных постоянных в Метагалактике соответствуют существованию в ней основных устойчивых связанных состояний. Так на сегодня вырисовываются основные черты грандиозного акта - рождения Метагалактики. О Т Р Е Д А К Т О Р А В начале 80-х годов в физике элементарных частиц произошла подлинная революция, связанная с созданием единой теории электромагнитных и слабых взаимодействий Глешоу-Вайнберга-Салама. Дальнейшие события не заставили себя ждать. В 1974 г. была предложена единая теория слабых, сильных и электромагнитных взаимодействий. В 1976 г. была предложена новая теория, названная супергравитацией, в рамках которой впервые возникла реальная надежда на построение единой теории всех фундаментальных взаимодействий, включая гравитационные. В начале 80-х годов особую популярность приобрели теории типа Калуцы-Клейна, согласно которым размерность нашего пространства больше четырех, но часть измерений "скомпактифицировано", так что мы не можем двигаться в соответствующих направлениях. С конца 1984 г. внимание всех физиков-теоретиков привлечено к теории суперструн, согласно которой основным объектом теории являются не точечные элементарные частицы, а струноподобные образования очень малого размера. Бурное развитие этой области знаний сопровождалось возникновением принципиально новых понятий (суперсимметрия, спонтанная компактификация и т.д.) и обогащением лексикона физиков-теоретиков целым рядом сложных математических терминов. Полученные при этом результаты позволили с новой точки зрения взглянуть на целый ряд проблем, давно стоявших перед теоретической физикой. В предложенной вниманию читателя книге сделана попытка осмыслить и изложить на достаточно простом языке те основные изменения, которые произошли в физике элементарных частиц и космологии за последние годы. Можно надеяться, что эта книга для многих окажется полезной и интересной. В книге, как и в ряде предшествующих работ, автор обсуждает еще один круг вопросов. Речь идет о проблеме единственности Вселенной и о проблеме формирования "фундаментальных постоянных". Несомненные успехи теории горячей Вселенной, основанной на однородной модели Вселенной Фридмана, постепенно привели к убеждению, что Вселенная всюду устроена примерно так же, как и в окрестностях Солнечной системы (хотя небольшие вариации все-таки допускались). Это убеждение находилось в полном соответствии с наблюдательными данными, согласно которым относительные неоднородности плотности в масштабах порядка размеров наблюдаемой части Вселенной весьма малы (DL RO / RO ~ 10**-4). (((ЗДЕСЬ DL КАКОЕ-ТО ОЧЕНЬ СТРАННОЕ, ЗАГНУТОЕ ХВОСТИКОМ В ДРУГУЮ СТОРОНУ, В НЕМ ЕСТЬ ЧТО-ТО ОТ СИГМЫ))) Изредка высказывавшиеся гипотезы о сильной неоднородности Вселенной в сверхбольших масштабах не имели под собой никаких оснований. Это обстоятельство в совокупности с не вызывавшим сомнений "фактом" единственности вакуумного состояния приводило к убеждению, что в подлинной теории элементарных частиц и свойства вакуума, и свойства Вселенной должны быть о_д_н_о_з_н_а_ч_н_о в_ы_ч_и_с_л_и_м_ы. Вместе с тем изучение таблиц элементарных частиц и анализ свойств наблюдаемой части Вселенной вовсе не оставляют ощущения безусловной гармонии. Почему электрон в 2000 раз легче протона? Почему планковская масса M| ~~ 10**-5 г, являющаяся единственным параметром размерности массы в теории тяготения, в 10**19 раз больше массы протона? Почему e**2 / (HP*c) ~~ 1 / 137? Почему Вселенная почти однородна и в то же время в ней есть такие немаловажные неоднородности, как планеты, звезды, галактики? Все это вызвало в памяти известный вопрос Эйнштейна о том, мог ли наш мир быть создан по-другому. ===РИС.12 Долгое время этот вопрос представлялся абсолютно схоластическим, и поднимать его в серьезных научных работах казалось неуместным. В последние годы ситуация резко изменилась. Это изменение произошло в связи с созданием единых теорий элементарных частиц и с развитием сценария раздувающейся Вселенной. Согласно единым теориям свойства наблюдаемого мира связаны с тем, каким именно образом нарушается симметрия между разными типами взаимодействий и какой из многих возможных вариантов компактификации исходного многомерного пространства осуществляется в окружающей нас части Вселенной. При этом сначала подразумевалось, что и выбор типа нарушения симметрии, и выбор способа компактификации должна происходить одинаково во всей Вселенной. Однако дальнейшее изучение этого вопроса показало, что в рамках сценария раздувающейся Вселенной гипотеза о таком единообразии Вселенной является не только ненужной, но и скорее всего несправедливой. Наиболее простым и естественным вариантом сценария раздувающейся Вселенной сейчас представляется так называемый сценарий хаотического раздувания`. В отличие от сценария, описанного в настоящей книге, сценарий хаотического раздувания не основан на теории фазовых переходов и расширения Вселенной в переохлажденном квазивакуумном состоянии FI=0. Оказалось, что раздувание может осуществляться, например, в обычной теории массивного скалярного поля FI, характеризуемого массой m, и в целом ряде других теорий, в которых потенциальная энергия V(FI) поля FI при больших FI растет как любая степень поля: V(FI) ~ FI**n. -----------------------------------------------------------` Линде А.Д. Раздувающаяся Вселенная // УФН. 1984. Т.144. С.137. ----------------------------------------------------------- Поведение Вселенной зависит от начального распределения классического поля FI, и в простейшей теории массивного скалярного поля FI с V(FI) = m**2 FI**2 / 2 оно может быть описано при помощи кривой на рис.12. Область начальных значений FI >~ M|**2 / m является p запрещенной. Дело в том, что при V(FI) = m**2 FI**2 / 2 >~ M|**4 квантовые флюктуации метрики p столь велики, что говорить о классическом пространстве-времени нельзя. В областях пространства, в которых поле FI изначально находилось в интервале M| ~< FI ~< M|**2 / m, процесс p p уменьшения поля FI идет очень медленно. Вселенная в это время расширяется приблизительно экспоненциально: a(t) ~ e**(H(FI)*t), где a(t) - масштабный фактор ("радиус") _ /--------, 2* \/ PI*m*FI Вселенной, H(FI) = -------------------. Эта стадия и _ /-----, \ / 3*M| \/ p называется стадией раздувания. В простейших моделях за время раздувания размер Вселенной вырастает в 10**(10**5) - 10**(10**10) раз (!). Когда поле FI уменьшается до FI ~ M|, оно начинает быстро колебаться вблизи минимума V(FI), и при наличии взаимодействия этого поля с другими физическими полями накопившаяся в нем энергия переходит в тепло, т.е. Вселенная становится горячей. Более детально изучение этого сценария`, проведенное недавно, показало, что в области - /-------, M| * \ / M| / m ~< FI ~< M|**2 / m за счет квантовых p \/ p p эффектов генерируются неоднородности поля FI с очень большой длиной волны, причем амплитуда этих неоднородностей, возникающих за характерное время ^t ~ H**-1, больше, чем общее уменьшение поля FI за это же время из-за "скатывания" поля FI к минимуму V(FI). В результате за время ^t ~ H**-1 общий объем Вселенной увеличивается в e**3 раз (из-за раздувания), и почти в половине этого объема поле FI не уменьшается, а растет, причем скорость раздувания Вселенной в областях с увеличившимся полем FI тоже увеличивается.

Date: 2015-07-01; view: 225; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию