Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






И того, что комплексно-сопряженная . . * * функция PSIG| (x) преобразуется по закону PSIG| (x) -> -i ALPHA * e





PSIG| (x). Следовательно, состояние системы, * которое определяется произведениями PSIG| A PSIG, инвариантны относительно преобразований (48), которые характеризуются изменениями фазы ALPHA. Существенно, что в приведенном примере ALPHA = const (x). Поэтому преобразование (48) называется глобальным фазовым (калибровочным) преобразованием. В известном смысле глобальное фазовое преобразование не согласуется с основным принципом теории относительности конечностью скорости передачи информации. Действительно, в нашем распоряжении нет возможности согласовать этот принцип с синхронизацией какой-либо величины (в том числе и фазы ALPHA) во всем бесконечном пространстве. Здесь не случайно сделана оговорка "в известном смысле", так как на практике обычно рассматриваются конечные области пространства. Однако принципиальный вопрос остается. Поэтому целесообразно обобщить инвариантность (48), требуя, чтобы фаза ALPHA зависела от положения системы ALPHA = ALPHA (x) /= const (x), а функция PSIG преобразовывалась по закону i ALPHA(x) PSIG'(x) -> e

PSIG (x). (49) Инвариантность такого типа называется локальной калибровочной инвариантностью. Оказывается, что требование уравнений динамики относительно локальной калибровочной инвариантности однозначно определяет уравнения поля. Остановимся сначала на уравнениях электродинамики. Как известно, ее уравнения (уравнения Максвелла или Дирака) определяются значением функций (полей) и их первыми производными. Выше отмечалось, что физические величины не зависят от значения фазы ALPHA. Однако эта независимость сохраняется для производных лишь при условии ALPHA=const(x), т.е. при глобальных преобразованиях. В общем случае (ALPHA=ALPHA(x)) производная DL PSIG i ALPHA(x) DL PSIG(x) --------- -> e

DL x DL x DL ALPHA (x) + PSIG (x) -------------- ] (50) DL x и, следовательно, неинвариантна относительно локальных калибровочных преобразований. Однако можно показать, что эта инвариантность восстанавливается, если наряду с преобразованием (48) при ALHPA = ALHPA (x) ввести одновременно калибровочное преобразование потенциалов A|'(x) -> A|(x) + DL ALPHA (x) / DL x, (51) ю ю с которыми мы уже сталкивались (см. (45)). Иначе говоря, уравнения электродинамики (или их квантовый эквивалент уравнения Дирака) инвариантны относительно совокупности обоих калибровочных преобразований (49), (51). С другой стороны, из этих преобразований однозначно следуют уравнения электродинамики: классические и квантовые. Калибровочные преобразования (49), (51) - необходимые и достаточные условия уравнений электродинамики. Сделаем в заключение три важных замечания. 1. Вывод о калибровочной инвариантности (соотношение 46)) базируется на допущении о неизменности фактора e при калибровочных преобразованиях. Ясно из определения этого фактора, что он играет роль электрического заряда. Таким образом, неизменность величины e отражает неизменность электрического заряда, т.е. его сохранение. Закон сохранения заряда никак не связан с видимым 4-мерным пространством. Он определяется калибровочной инвариантностью. Далее, в разд.9 этой главы мы продемонстрируем связь геометрии с калибровочной инвариантностью и, следовательно, законом сохранения заряда. Однако эта геометрия весьма отличается от геометрии Евклида или Минковского. 2. В соотношении (45) вектор A и функция f или ALPHA зависят от четырех координат (t,x,y,z). Этим калибровочное условие (45) или (51) существенно отличается от калибровочного соотношения (41), в котором величина b не зависит от координат. 3. Таким образом, можно установить эквивалентность следующих утверждений: уравнения движения (поля) - калибровочно инвариантны, заряд в замкнутой системе сохраняется, силы в статическом случае дальнодействующие, масса частицы переносчика взаимодействия m||=0. GAMMA Последнее свойство является важной особенностью калибровочной инвариантности, а также и всех остальных ее следствий. Дело в том, что частицы с нулевой массой обладают особым свойством: у таких частиц существует всего два направления поляризации в отличие от частиц с массой m /= 0, у которых имеются три три направления поляризации. Это особое свойство безмассовых частиц и есть первопричина калибровочной инвариантности.` -----------------------------------------------------------` Наиболее просто взаимосвязь условия m|| = 0 и GAMMA калибровочной инвариантности показана в ст.: Вайнберг С. Свет как фундаментальная частица//УФН. 1976. Т.120. С.677. Подробнее о калибровочной инвариантности см. в кн.: Коноплева Н.П. Попов В.Н. Калибровочные поля. М.: Атомиздат. 1980; Окунь Л.Б. Физика элементарных частиц. М.: Наука, 1984. ----------------------------------------------------------- 8. ГЕОМЕТРИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СОСТОЯНИЙ Рассмотрим пример: систему невзаимодействующих частиц, движущихся по классическим траекториям. Каждой частице в момент времени t соответствуют свои координаты и проекции импульса. Таким образом, каждой точке видимого пространства соответствует значение вектора импульса. Можно рассматривать движение системы частиц в этом пространстве, не придавая совокупности импульсов никакого геометрического смысла. Кроме того, можно полагать, что вся совокупность координат играет роль базы, а векторы импульсов - слоев. При отсутствии взаимодействия подобное расслоенное пространство тривиально, а использование в данном случае образа расслоенного пространства и его несколько непривычных для физиков понятий - ненужное усложнение. Разумнее рассматривать изолированно два пространства: конфигурационное (координаты) и импульсное. Однако ситуация меняется, если пытаться интерпретировать внутренние квантовые числа элементарных частиц. Здесь мы остановимся на геометрической интерпретации спина, изотопического спина и цвета (об этих квантовых числах см. Дополнение). Введем вектор, характеризующий состояние системы, которую для определенности мы будем отождествлять с частицей. В первом приближении под состоянием следует понимать значения ее координат и вектора импульса. Однако если пытаться включить в понятие состояния значения внутренних квантовых чисел, то элементарная (привычная) наглядность состояния частицы утрачивается. Если понятие спина частицы можно отождествить с вращением вектора состояния в обычном конфигуральном пространстве (например, пространстве Минковского), то уже при попытке наглядно геометрически интерпретировать изотопический спин возникают определенные трудности. Формализмы обычного и изотопического спинов тождественны. Они соответствуют вращениям вектора состояния в трехмерном пространстве`. В интерпретации спина проблем нет. Это наше привычное евклидово пространство. Однако в каком пространстве вращается вектор изотопического спина? Со времен введения понятия изотопического спина (Гейзенберг, 1932) произносили слова, похожие на заклинание: вектор изотопического спина вращается в воображаемом "зарядовом" пространстве. -----------------------------------------------------------` На теоретико-групповом языке изотопический и обычный спины соответствуют неприводимым представлениям группы SU(2) (SU - аббревиатура слов: специальная, унитарная. Символ 2 обозначает, что группа соответствует двумерному комплексному пространству). ----------------------------------------------------------- Однако, используя язык расслоенных пространств, этому заклинанию можно придать некоторый физико-геометрический смысл. Допустим, что изотопическое пространство является слоем над базой - пространством Евклида (Минковского). Иначе говоря, мы представляем реальное физическое пространство как расслоенное пространство с базой - видимым пространством и слоем - изотопическим (зарядовым) пространством. Нам нужно, чтобы свойства этого слоя удовлетворяли двум условиям: 1) слой должен быть трехмерной сферой (аналог пространства, в котором вращается вектор обычного спина), 2) размеры этой сферы должны быть очень малы, во всяком случае, много меньше расстояний 10**-16 см, хорошо изученных на опыте. Если бы радиус слоя превышал 10**-16 см, то слой изотопическое пространство - проявлялся бы на экспериментах, в основе которых лежат представления о реальном физическом пространстве. Этот эффект, например, проявлялся бы в отклонении наблюдаемого сечения рассеяния позитронов на электронах от вычисленного значения сечения. Поскольку такое отклонение отсутствует, то следует сделать вывод, что если изотопическое пространство и реально, то его размеры (размеры слоя) весьма малы. В дальнейшем, в гл.3, мы оценим эти размеры. Исключительная малость размеров изотопического пространство делает в известном смысле иллюзорной попытку провести грань между словами "реальное" и "воображаемое" пространство. На опыте это пространство ненаблюдаемо, а слова: "изотопическое пространство есть слой над базой видимое пространство" - имеют в значительной степени филологические смысл. ===РИС.5 Подобная квалификация кажется тем более оправданной, поскольку простая геометризация изотопического спина никак не увязывается с взаимодействием частиц. Чтобы реализовать связи в треугольнике геометрия - изотопический спин взаимодействие, нужна руководящая идея. Пока мы ограничимся постулированием такой идеи, а в гл.3 подробно изложим аргументы в ее пользу. В настоящее время представляется, что основой сформулированного выше "треугольника" является калибровочная инвариантность. В качестве предварительного оправдания подобного постулата можно привести довод: калибровочная симметрия (правда, в различных модификациях) лежит в основе четырех известных взаимодействий. Можно наглядно (но упрощенно) представить геометрическую интерпретацию изотопического спина (рис.5). К каждой точке прямой "прикреплена" сфера произвольного (единичного) радиуса, в которой вращается вектор состояния, зависящий от координаты. Разумеется, реально точка базового пространства имеет три, а не одно измерение, однако представить наглядную 4-мерную конструкцию невозможно. 9. МНОГОМЕРНАЯ ИНТЕРПРЕТАЦИЯ ВЗАИМОДЕЙСТВИЙ Для понимания дальнейшей процедуры геометризации взаимодействия нужно четко представить следующие положения: 1. Взаимодействие обуславливается свойствами частиц переносчиков взаимодействия, и в частности их изотопическим спином (см. Дополнения). 2. Состояние представляется вектором, вращающимся в слое расслоенного пространства. 3. Взаимодействие определяется характеристиками расслоенного пространства, и в частности связностью. 4. В основе взаимодействия лежит калибровочная инвариантность. Эти положения носят программный характер. Дальнейшее представляет их конкретную реализацию. Для простоты ограничимся вначале электродинамикой. Как упоминалось ранее, уравнения электродинамики однозначно определяются характеристиками фотона - частицы, переносящей электромагнитное взаимодействие. Масса и изотопический спин фотона равны нулю. Это обстоятельство приводит к фазовой инвариантности функции состояния i ALPHA(x) PSIG'(x) -> e

PSIG(x) и калибровочной инвариантности потенциалов A'(x) -> A(x) + DL f (x) / DL x. Важно, что в формуле для преобразования функция ALPHA(x) простое (хотя, возможно, и комплексное) число, а не матрица. Это свойство определяется нулевым значением изотопического спина фотона. Если бы изотопический спин частицы-переносчика был отличен от нуля, то коэффициент ALPHA представлялся бы матрицей, что кардинально изменяло бы ситуацию. Этот случай будет рассмотрен далее. Вернемся теперь к соотношению инвариантности функции PSIG в электродинамике и будем геометрически i ALPHA(x) интерпретировать фазовый множитель e

Рассмотрим, как и ранее, простейший случай статического поля. В этом случае ALPHA(x) = const. Однако (и это обстоятельство играет важнейшую роль) ALPHA может иметь любое действительное значение. Напомним еще раз, что вследствие теоремы Эйлера функция i ALPHA e

Date: 2015-07-01; view: 232; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию