Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Виды памяти компьютера





Всем компьютерам требуется место для временного хранения информации во время обработки других фрагментов информации. Обычно в цифровых компьютерах хранение информации выполняется на двух различных уровнях: в первичной памяти (построенной на полупроводниковых чипах ОЗУ и ПЗУ) и в памяти для хранения больших объемов информации (обычно использующей жесткие диски). Большая часть первичной памяти системы располагается на системной плате. На системной плате первичная память существует, как правило, в двух или трех формах: Постоянное запоминающее устройство (ПЗУ). Содержит постоянные программы начального запуска компьютера. Оперативное запоминающее устройство (ОЗУ). Эта память имеет достаточно высокое быстродействие, чтобы взаимодействовать непосредственно с процессором, и допускает считывание и запись в него с любой требуемой частотой. Кэш-память. Быстродействующая система ОЗУ, предназначенная специально для хранения информации, которая, скорее всего, будет использована процессором. Устройства ПЗУ хранят информацию постоянно и используются для хранения программ и данных, которые остаются неизменными. Устройства ОЗУ хранят сохраненную в них информацию до тех пор, пока электроэнергия подводится к ИС. Любое прерывание в подаче электроэнергии приводит к исчезновению содержимого памяти. Такую память называют энергозависимой. И напротив, ПЗУ является энергонезависимой памятью. Каждая системная плата содержит одну или две ИС ПЗУ, в которых хранится программа базовой системы ввода/вывода (basic input/output system — BIOS). Программа BIOS содержит основные инструкции для обмена данными между микропроцессором и различными устройствами ввода и вывода системы. До недавнего времени эта информация постоянно хранилась внутри чипов ПЗУ и ее можно было изменить, только заменяя чипы.

Усовершенствования в технологии EEPROM (electrically erasable programmable read-only memory — электрически-стираемое программируемое ПЗУ) привели к появлению устройств флэш-памяти, которые допускают запись (загрузку) новой информации BIOS в ПЗУ с целью обновления его содержимого. Эта информация может быть переписана с диска обновления или загружена с другого компьютера. В отличие от ИС ОЗУ, содержимое флэш-памяти сохраняется после отключения электропитания чипа. В любом случае модернизированная BIOS должна быть совместима с системной платой, с которой она используется, и должна быть самой новой из доступных версий. Информация в BIOS представляет весь «интеллект», которым располагает компьютер до тех пор, пока он не сможет загрузить дополнительную информацию из другого источника, скажем, жесткого диска. Рассматриваемые совместно, программное и аппаратное (чип ПЗУ) обеспечение BIOS называют программно-аппаратными средствами. Эти ИС могут размещаться в любом месте системной платы, но обычно их легко узнать по размеру и форме (как правило, это устройства в 28-контактных, устанавливаемых в гнезда двухрядных корпусах DIP). В более старых конструкциях компьютеров PC, таких как XT и AT, память ОЗУ системы состояла из банков отдельных ИС ОЗУ, устанавливаемых в гнезда DIP. В конструкциях промежуточных клонов группы ИС ОЗУ помещались на небольшие 30-контактные дочерние платы, называвшиеся корпусами с однорядным расположением выводов (SIP). Такой метод установки требовал меньше места на плате.

Дальнейшие усовершенствования модулей ОЗУ привел к появлению модулей памяти с однорядным расположением выводов (SIMM) и модулей памяти с двухрядным расположением выводов (DIMM). Подобно модулям SIP, модули SIMM и DIMM устанавливаются на системную плату вертикально. Однако для их установки используют не просто вставку выводов в гнезда, а специальные гнезда с фиксированием, которые жестко поддерживают модуль в вертикальном положении. Как правило, ПК продаются с не полностью заполненными гнездами ОЗУ. Это позволяет пользователям приобретать менее дорогие компьютеры, удовлетворяющие их персональным потребностям, но при этом сохраняется возможность установки в будущем дополнительных модулей ОЗУ, если в этом возникнет необходимость.

Компьютер обменивается информацией с внешним миром с помощью периферийных устройств. Только благодаря периферийным устройствам человек может взаимодействовать с компьютером, а также со всеми подключенными к нему устройствами. Любое подключенное периферийное устройство в каждый момент времени может быть или занято выполнением порученной ему работы или пребывать в ожидании нового задания. Влияние скорости работы периферийных устройств на эффективность работы с компьютером не меньше, чем скорость работы его центрального процессора. Скорость работы внешних устройств от быстродействия процессора не зависит. Наиболее распространенные периферийные устройства приведены на рисунке 3.

 

Рис. 3 – Периферийный устройства ПК

 

Периферийные устройства делятся на устройства ввода и устройства вывода. Устройства ввода преобразуют информацию в форму понятную машине, после чего компьютер может ее обрабатывать и запоминать. Устройства вывода переводят информацию из машинного представления в образы, понятные человеку. Ниже приведена классификация устройств ввода.

 

Рис. 4 – классификация устройств ввода

 

Самым известным устройством ввода информации является клавиатура (keyboard) – это стандартное устройство, предназначенное для ручного ввода информации. Работой клавиатуры управляет контроллер клавиатуры, расположенный на материнской плате и подключаемый к ней через разъем на задней панели компьютера. При нажатии пользователем клавиши на клавиатуре, контроллер клавиатуры преобразует код нажатой клавиши в соответствующую последовательность битов и передает их компьютеру. Отображение символов, набранных на клавиатуре, на экране компьютера называется эхом. Обычная современная клавиатура имеет, как правило, 101-104 клавиши, среди которых выделяют алфавитно-цифровые клавиши, необходимые для ввода текста, клавиши управления курсором и ряд специальных и управляющих клавиш. Существуют беспроводные модели клавиатуры, в них связь клавиатуры с компьютером осуществляется посредством инфракрасных лучей.

Наиболее важными характеристиками клавиатуры являются чувствительность ее клавиш к нажатию, мягкость хода клавиш и расстояние между клавишами. На долговечность клавиатуры определяется количеством нажатий, которые она рассчитана выдержать. Клавиатура проектируется таким образом, чтобы каждая клавиша выдерживала 30-50 миллионов нажатий.

К манипуляторам относят устройства, преобразующие движения руки пользователя в управляющую информацию для компьютера. Среди манипуляторов выделяют мыши, трекболы, джойстики.

Мышь предназначена для выбора и перемещения графических объектов экрана монитора компьютера. Для этого используется указатель, перемещением которого по экрану управляет мышь. Мышь позволяет существенно сократить работу человека с клавиатурой при управлении курсором и вводе команд. Особенно эффективно мышь используется при работе графическими редакторами, издательскими системами, играми. Современные операционные системы также активно используют мышь для управляющих команд.

У мыши могут быть одна, две или три клавиши. Между двумя крайними клавишами современных мышей часто располагают скрол. Это дополнительное устройство в виде колесика, которое позволяет осуществлять прокрутку документов вверх-вниз и другие дополнительные функции.

Мышь состоит из пластикового корпуса, cверху находятся кнопки, соединенные с микропереключателями. Внутри корпуса находится обрезиненный металлический шарик, нижняя часть которого соприкасается с поверхностью стола или специального коврика для мыши, который увеличивает сцепление шарика с поверхностью. При движении манипулятора шарик вращается и переедает движение на соединенные с ним датчики продольного и поперечного перемещения. Датчики преобразуют движения шарика в соответствующие импульсы, которые передаются по проводам мыши в системный блок на управляющий контроллер. Контроллер передает обработанные сигналы операционной системе, которая перемещает графический указатель по экрану. В беспроводной мыши данные передаются с помощью инфракрасных лучей. Существуют оптические мыши, в них функции датчика движения выполняют приемники лазерных лучей, отраженных от поверхности стола.

Трекбол по функциям близок мыши, но шарик в нем больших размеров, и перемещение указателя осуществляется вращением этого шарика руками. Трекбол удобен тем, что его не требуется перемещать по поверхности стола, которого может не быть в наличии. Поэтому, по сравнению с мышью, он занимает на столе меньше места. Большинство переносных компьютеров оснащаются встроенным трекболом.

Джойстик представляет собой основание с подвижной рукояткой, которая может наклоняться в продольном и поперечном направлениях. Рукоятка и основание снабжаются кнопками. Внутри джойстика расположены датчики, преобразующие угол и направление наклона рукоятки в соответствующие сигналы, передаваемые операционной системе. В соответствии с этими сигналами осуществляется перемещение и управление графических объектов на экране.

Дигитайзер – это устройство для ввода графических данных, таких как чертежи, схемы, планы и т. п. Он состоит из планшета, соединенного с ним визира или специального карандаша. Перемещая карандаш по планшету, пользователь рисует изображение, которое выводится на экран.

Сканер – устройство ввода графических изображений в компьютер. В сканер закладывается лист бумаги с изображением. Устройство считывает его и пересылает компьютеру в цифровом виде. Во время сканирования вдоль листа с изображением плавно перемещается мощная лампа и линейка с множеством расположенных на ней в ряд светочувствительных элементов. Обычно в качестве светочувствительных элементов используют фотодиоды. Каждый светочувствительный элемент вырабатывает сигнал, пропорциональный яркости отраженного света от участка бумаги, расположенного напротив него. Яркость отраженного луча меняется из-за того, что светлые места сканируемого изображения отражают гораздо лучше, чем темные, покрытые краской. В цветных сканерах расположено три группы светочувствительных элементов, обрабатывающих соответственно красные, зеленые и синие цвета. Таким образом, каждая точка изображения кодируется как сочетание сигналов, вырабатываемых светочувствительными элементами красной, зеленой и синей групп. Закодированный таким образом сигнал передается на контроллер сканера в системный блок.

Различают сканеры ручные, протягивающие и планшетные. В ручных сканерах пользователь сам ведет сканер по поверхности изображения или текста. Протягивающие сканеры предназначены для сканирования изображений на листах только определенного формата. Протягивающее устройство таких сканеров последовательно перемещает все участки сканируемого листа над неподвижной светочувствительной матрицей. Наибольшее распространение получили планшетные сканеры, которые позволяют сканировать листы бусмги, книги и другие объекты, содержащие изображения. Такие сканеры состоят из пластикового корпуса, закрываемого крышкой. Верхняя поверхность корпуса выполняется из оптически прозрачного материала, на который кладется сканируемое изображение. После этого изображение закрывается крышкой и производится сканирование. В процессе сканирования под стеклом перемещается лампа со светочувствительной матрицей.

Главные характеристики сканеров - это скорость считывания, которая выражается количеством сканируемых станиц в минуту (pages per minute - ppm), и разрешающая способность, выражаемая числом точек получаемого изображения на дюйм оригинала (dots per inch - dpi).

После ввода пользователем исходных данных компьютер должен их обработать в соответствии с заданной программой и вывести результаты в форме, удобной для восприятия пользователем или для использования другими автоматическими устройствам посредством устройств вывода.

Выводимая информация может отображаться в графическом виде, для этого используются мониторы, принтеры или плоттеры. Информация может также воспроизводиться в виде звуков с помощью акустических колонок или головных телефонов, регистрироваться в виде тактильных ощущений в технологии виртуальной реальности, распространяться в виде управляющих сигналов устройства автоматики, передаваться в виде электрических сигналов по сети.

Монитор (дисплей) является основным устройством вывода графической информации. По размеру диагонали экрана выделяют мониторы 14-дюймовые, 15-дюймовые, 17-дюймовые, 19-дюймовые, 21-дюймовые. Чем больше диагональ монитора, тем он дороже. По цветности мониторы бывают монохромные и цветные. Любое изображение на экране монитора образуется из светящихся разными цветами точек, называемых пикселями (это название происходит от PICture CELL - элемент картинки). Пиксель – это самый мелкий элемент, который может быть отображен на экране. Чем качественнее монитор, тем меньше размер пикселей, тем четче и контрастнее изображение, тем легче прочесть самый мелкий текст, а значит, и меньше напряжение глаз. По принципу действия мониторы подразделяются на мониторы с электронно-лучевой трубкой (Catode Ray Tube - CRT) и жидкокристаллические - (Liquid Crystal Display - LCD).

В мониторах с электронно-лучевой трубкой изображение формируется с помощью зерен люминофора – вещества, которое светится под воздействием электронного луча. Различают три типа люминофоров в соответствии с цветами их свечения: красный, зеленый и синий. Цвет каждой точки экрана определяется смешением свечения трех разноцветных точек (триады), отвечающих за данный пиксель. Яркость соответствующего цвета меняется в зависимости от мощности электронного пучка, попавшего в соответствующую точку. Электронный пучок формируется с помощью электронной пушки. Электронная пушка состоит из нагреваемого при прохождении электрического тока проводника с высоким удельным электрическим сопротивлением, эмитирующего электроны покрытия, фокусирующей и отклоняющей системы.

При прохождении электрического тока через нагревательный элемент электронной пушки, эмитирующее покрытие, нагреваясь, начинает испускать электроны. Под действием ускоряющего напряжения электроны разгоняются и достигают поверхности экрана, покрытой люминофором, который начинает светиться. Управление пучком электронов осуществляется отклоняющей и фокусирующей системой, которые состоят из набора катушек и пластин, воздействующих на электронный пучек с помощью магнитного и электрического полей. В соответствии с сигналами развертки, подаваемыми на электронную пушку, электронный луч побегает по каждой строчке экрана, последовательно высвечивая соответствующие точки люминофора. Дойдя до последней точки, луч возвращается к началу экрана. Таким образом, в течение определенного периода времени изображение перерисовывается. Частоту смены изображений определяет частота горизонтальной синхронизации. Это один из наиболее важных параметров монитора, определяющих степень его вредного воздействия на глаза. В настоящее время гигиенически допустимый минимум частоты горизонтальной синхронизации составляет 80 Гц, у профессиональных мониторов она составляет 150 Гц.

Современные мониторы с электронно-лучевой трубкой имеют специальное антибликовое покрытие, уменьшающее отраженный свет окон и осветительных приборов. Кроме того, монитор покрывают антистатическим покрытием и пленкой, защищающей от электромагнитного излучения. Дополнительно на монитор можно установить защитный экран, который необходимо подсоединить к заземляющему проводу, что также защитит от электромагнитного излучения и бликов. Уровни излучения мониторов нормируются в соответствии со стандартами LR, MPR и MPR-II.

Жидкокристаллические мониторы имеют меньшие размеры, потребляют меньше электроэнергии, обеспечивают более четкое статическое изображение. В них отсутствуют типичные для мониторов с электронно-лучевой трубкой искажения. Принцип отображения на жидкокристаллических мониторах основан на поляризации света. Источником излучения здесь служат лампы подсветки, расположенные по краям жидкокристаллической матрицы. Свет от источника света однородным потоком проходит через слой жидких кристаллов. В зависимости от того, в каком состоянии находится кристалл, проходящий луч света либо поляризуется, либо не поляризуется. Далее свет проходит через специальное покрытие, которое пропускает свет только определенной поляризации. Там же происходит окраска лучей в нужную цветовую палитру. Жидкокристаллические мониторы практически не производят вредного для человека излучения.

Для получения копий изображения на бумаге применяют принтеры, которые классифицируются:

o по способу получения изображения: литерные, матричные, струйные, лазерные и термические;

o по способу формирования изображения: последовательные, строчные, страничные;

o по способу печати: ударные, безударные;

o по цветности: чёрно-белые, цветные.

Наиболее распространены принтеры матричные, лазерные и струйные принтеры. Матричные принтеры схожи по принципу действия с печатной машинкой. Печатающая головка перемещается в поперечном направлении и формирует изображение из множества точек, ударяя иголками по красящей ленте. Красящая лента перемещается через печатающую головку с помощью микроэлектродвигателя. Соответствующие точки в месте удара иголок отпечатываются на бумаге, расположенной под красящей лентой. Бумага перемещается в продольном направлении после формирования каждой строчки изображения. Полиграфическое качество изображения, получаемого с помощью матричных принтеров низкое и они шумны во время работы. Основное достоинство матричных принтеров - низкая цена расходных материалов и невысокие требования к качеству бумаги.

Струйный принтер относится к безударным принтерам. Изображение в нем формируется с помощью чернил, которые распыляются через капилляры печатающей головки.

Лазерный принтер также относится к безударным принтерам. Он формирует изображение постранично. Первоначально изображение создается на фотобарабане, который предварительно электризуется статическим электричеством. Луч лазера в соответствии с изображением снимает статический заряд на белых участках рисунка. Затем на барабан наносится специальное красящее вещество –тонер, который прилипает к фотобарабану на участках с неснятым статическим зарядом. Затем тонер переносится на бумагу и нагревается. Частицы тонера плавятся и прилипают к бумаге.

Для ускорения работы, принтеры имеют собственную память, в которой они хранят образ информации, подготовленной к печати.

К основным характеристикам принтеров можно относятся:

- ширина каретки, которая обычно соответствую бумажному формату А3 или А4;

- скорость печати, измеряемая количеством листов, печатаемы в минуту

- качество печати, определяемое разрешающей способностью принтера - количеством точек на дюйм линейного изображения. Чем разрешение выше, тем лучше качество печати.

- расход материалов: лазерным принтером - порошка, струйным принтером - чернил, матричным принтером - красящих лент.

Плоттер (графопостроитель) – это устройство для отображения векторных изображений на бумаге, кальке, пленке и других подобных материалах. Плоттеры снабжаются сменными пишущими узлами, которые могут перемещаться вдоль бумаги в продольном и поперечном направлениях. В пишущий узел могут вставляться цветные перья или ножи для резки бумаги. Графопостроители могут быть миниатюрными, и могут быть настолько большими, что на них можно вычертить кузов автомобиля или деталь самолета в натуральную величину.

В базовую конфигурацию компьютера входит минимальный набор комплектующих, состоящий из системного блока, монитора, клавиатуры, мыши. Внутренние устройства, входящие в состав системного блока с базовой конфигурацией, – это материнская плата, процессор, оперативная память, жесткий диск, видеокарта, блок питания, дисковод CD-ROM. Конфигурации персональных компьютеров создаются в зависимости от основного функционального назначения этой техники, и самое большое разнообразие возможных конфигураций имеют настольные ПК. Их классифицируют на офисные, домашние, дизайнерские, игровые. Кроме того, компьютеры из этой группы дополнительно классифицируют по уровню производительности, выделяя начальный, средний, высший уровень.

Офисные ПК предназначены главным образом для работы с офисными программами и приложениями, обычно подключаются к локальным сетям и не отличаются высокой производительностью или скоростью. Все, что от них требуется, это стабильность и бесперебойность работы.

Домашние ПК в основном используются для решения задач, не требующих особой мощности и производительности. Это поиск информации, работа с текстовыми документами, общение в соцсетях и на форумах, прослушивание музыки и т.п. Тем не менее, конфигурация домашних ПК обычно включает качественный монитор, достаточно хорошие процессор, видеокарту, привод DVD, акустику. Подключение к сети Интернет – обязательно, подключение к телевизору – предусматривается в большинстве случаев. Дополнением к конфигурации выступают сканер, принтер, ТВ-тюнер, web-камера и др.

Игровые ПК отличаются от остальных наличием мощной графической подсистемы. Главными элементами их конфигурации являются мощный процессор, мощная видеокарта Radeon или Geforce и оперативная память достаточного объема. Комплектация подразумевает обязательное включение игровых аксессуаров (джойстика, руля, педалей и т.д.).

Дизайнерские ПК или графические станции предназначены для работы с объемными и сложными графическими приложениями и качественной обработки фото- и видеофайлов. Конфигурация может быть изменена в зависимости от конкретно выполняемых с его помощью задач: работа с ЗD-графикой требует мощной видеокарты, работа с видеофайлами – высокопроизводительного процессора и т.д.

Перед тем, как делать выбор предпочтительной конфигурации собственного ПК, необходимо четко определить круг задач, которые он должен будет выполнять, то есть его назначение. Для выхода в Интернет, работы с простыми текстовыми документами и прослушивания музыкальных композиций достаточно компьютера с офисной конфигурацией. Сравнительно небольшой мощности, которой он обладает, вполне достаточно для очерченного круга задач, а среди его достоинств такие ценные качества, как бесшумность работы и минимальный уровень энергопотребления. Домашний компьютер мультимедийной направленности позволит работать в графическом редакторе, просматривать видео и слушать музыку в хорошем качестве и др., обеспечивая вполне приличную производительность. Игровой и дизайнерский ПК оценят, соответственно, геймеры и дизайнеры, которым требуется максимально высокая производительность компьютера для работы со сложными графическими приложениями и программами. Разумеется, стоимость каждой из конфигураций возрастает одновременно с ростом производительности и увеличением мощности персонального компьютера.

Date: 2016-07-25; view: 1610; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию